Украина (Киев)

поликарбонат приумножающий урожай

(098) 405-05-39

(050) 462-38-93

Научная информация

влияние света на растения

 

Солнечный свет — один из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества.

 

Основными характеристиками света являются его спектральный состав, интенсивность, суточная и сезонная динамика.

 

По спектральному составу солнечный свет неоднороден. В него входят лучи, имеющие различную длину волны. Из всего спектра для жизни растений важна фотосинтетическая активная (380-710 нм) и физиологически активная радиация (300-800 нм).

 

Причем, наибольшее значение имеют красные (720-600 нм) и оранжевые лучи (620-595 нм). Именно они являются основными поставщиками энергии для фотосинтеза и влияют на процессы, связанные с изменением скорости развития растения (избыток красной и оранжевой составляющей спектра задерживает переход растения к цветению).

 

Синие и фиолетовые (490-380нм) лучи, кроме непосредственного участия в фотосинтезе, стимулируют образование белков и регулируют скорость развития растения. У растений, живущих в природе в условиях короткого дня, эти лучи ускоряют наступление периода цветения.

Ультрафиолетовые лучи с длиной волны 315-380 нм задерживают «вытягивание» растений и стимулируют синтез некоторых витаминов, а ультрафиолетовые лучи с длиной волны 280-315 нм повышают холодостойкость.

 

Лишь желтые (595-565 нм) и зеленые (565-490 нм) не играют особой роли в жизни растений.

 

Учет потребностей растений в определенном спектральном составе света необходим при правильном подборе источников искусственного освещения. В комнатных условиях в качестве таковых наиболее удобно использовать люминесцентные лампы ЛБ и ЛДЦ.

 

Почти все комнатные растения светолюбивы, т.е. лучше развиваются при полном освещение, но различаются по теневыносливости. Принимая во внимание отношение растений к свету, их принято подразделять на три основные группы: светолюбивые, теневыносливые и  тенеиндифферентные.

Как и все живые организмы, растения обладают способностью адаптироваться к изменяющимся условиям. Эта способность различна у разных видов. Есть растения, довольно легко приспосабливающиеся к достаточному или избыточному свету, но встречаются и такие, которые хорошо развиваются только при строго определенных параметрах освещенности. В результате адаптации растения к пониженной освещенности несколько меняется его облик. Листья становятся темно-зелеными и немного увеличиваются в размерах (линейные листья удлиняются и становятся уже), начинается вытягивание междоузлий стебля, который при этом теряет свою прочность. Затем их рост постепенно уменьшается, т.к. резко снижается производство продуктов фотосинтеза, идущих на посторенние тела растения. При недостатке света многие растения перестают цвести.

 

При избытке света хлорофилл частично разрушается, и цвет листьев становится желто-зеленым. На сильном свету рост растений замедляется, они получаются более приземистыми с короткими междоузлиями и широкими короткими листьями.

 

Появление бронзово-желтой окраски листьев указывает на значительный избыток света, который вреден растениям. Если срочно не принять соответствующие меры, может возникнуть ожог.

 

Важными характеристиками светового режима является суточная и сезонная динамика.

 

Длина светового дня меняется в течение года. В умеренных широтах самый короткий день равен 8 ч., а самый длинный — более 16 ч.

 

Источник: http://www.floralworld.ru/care/light.html#planst2

Фотосинтез и Фотоморфогенез

 

"Каждый Фазан Сидит там, Где Зеленеет Овес"

 

Многие из садоводов-цветоводов, пробовавших выращивать рассаду, сталкивались с таким неприятным явлением, как вытягивание рассады в условиях недостаточной освещенности при посеве ранней весной.

Попробуем разобраться в причинах и попытаемся понять, как его предотвратить. Ну, а для начала - немного теории.

 

  • Спектр дневного света

 

Из школьного курса физики известно, что знаменитая формула: Каждый Охотник Желает Знать - Где Сидит Фазан описывает очередность расположения в спектре белого цвета семи основных цветов, если перечислять их в обратной последовательности (справа - налево):

________________________________________

фиолетовый синий голубой зеленый желтый оранжевый красный

390—440 440—480 480—510 510—575 575—585 585—620 630—770

________________________________________

 

Количественно цвет или спектральная составляющая характеризуется длиной волны, которая измеряется в нанометрах (нм). Белый свет занимает область длин волн от 400 до 800 нм. При этом фиолетовый расположен в левой (короткие волны) части (400 нм), а красный - в правой (длинные волны)части диапазона (800 нм).

В левой части - переход в область ультрафиолетового излучения, в правой - в область инфракрасного (теплового) излучения.

Замечу сразу, что применительно к жизни растений принято красный свет делить на просто красный (660 нм) и дальнийкрасный (730 нм). В чем их разница - об этом чуть ниже. Но это очень важные участки спектра.

 

Совсем детский вопрос: почему днем свет - белый, а окружающий нас мир - цветной ? Почему какие-то поверхности, предметы, объекты имеют тот или иной цвет?

 

Ответ прост: если поверхность непрозрачного предмета (частицы, его составляющие) отражает, например, красную часть спектра, а остальные - поглощает, то мы будем видеть ее тоже красной. Аналогично и с другими цветами или их комбинациями.

 

  • Фотосинтез

 

Представим себе уже достаточно взрослое растущее зеленое растение.

Главные условия его жизни: солнце, воздух и вода (плюс минеральное питание из почвы). Солнечный свет - источник энергии, диоксид углерода (углекислый газ) воздуха - источник углерода (главного строительного материала) и вода - источник кислорода, входящего в ее состав (на молекулярном уровне).

И все эти три жизненные силы объединены процессом фотосинтеза, при котором происходит образование органических веществ (углеводов) благодаря энергии света при участии фотосинтезирующего пигмента - хлорофилла.

Днем, на свету вода разделяется на кислород и водород и запасается энергия. Ночью, в темноте углекислый газ соединяется благодаря запасенной энергии с водородом, и образуются молекулы углеводов.

Заметим, что выделяющимся в результате световой фазы фотосинтеза кислородом дышит все живое на Земле.

 

Как же влияет на фотосинтез спектральный состав солнечного или иного света ?

Давайте вспомним - почему лист растения зеленый? Правильно, именно потому, что его поверхность отражает (а значит - не поглощает) зеленый свет. А это свойство объясняется именно присутствием в зеленом листе пигмента хлорофилла. И поглощает хлорофилл свет (а значит и энергию) из красной и синей областей спектра дневного света.

 

Отсюда вывод применительно к фотосинтезу: желто-зеленая составляющая дневного света практически бесполезна для роста и жизни растения, а нужен ему - красный и синий свет.

Но давайте все же не забывать, что все сказанное про фотосинтез относится к взрослому (или достаточно подросшему) растению. А нас интересуют особенно первые дни или даже часы жизни растения, прорастающего из семени.

 

И оказывается, что здесь есть свои законы, возможно даже более сложные, чем процессы фотосинтеза. Который не происходит по той простой причине, что в проростке пока еще нет хлорофилла, без которого фотосинтез, а значит, рост и сама жизнь растения - невозможны. Как же разорвать этот порочный круг? И тут появляется новое понятие - фотоморфогенез.

 

  • Фотоморфогенез

 

Фотоморфогенез - это процессы, происходящие в растении под влиянием света различного спектрального состава и интенсивности. В них свет выступает не как первичный источник энергии, а как сигнальное средство, регулирующеепроцессы роста и развития растения. Можно провести некую аналогию с уличным светофором, автоматически регулирующим дорожное движение. Только для управления природа выбрала не "красный - желтый -зеленый", а другой набор цветов: "синий - красный - дальний красный".

 

И первое проявление фотоморфогенеза возникает в момент прорастания семени.

Про строение семени и особенности прорастания я уже рассказывал в статье про рассаду . Но там были опущены подробности, связанные с сигнальным действием света.Восполним же этот пробел.

 

Итак, семя проснулось от спячки и начало прорастать, находясь при этом под слоем почвогрунта, т.е в темноте. Замечу сразу, что мелкие семена, посеянные поверхностно и не присыпанные ничем, тоже прорастают в темноте ночью.

 

Кстати, по моим наблюдениям, вообще вся раасада, стоящая в светлом месте, прорастает ночью и увидеть массовые всходы можно утром.

Но вернемся к нашему несчастному проклюнувшемуся семени. Проблема заключается в том, что даже появившись на поверхность почвы, росток об этом не знает и продолжает активно расти, тянуться к свету, к жизни, пока не получит специального сигнала: стоп, можно дальше не спешить, ты уже на свободе и будешь жить. (Мне кажется, люди не сами придумали красный стоп-сигнал для водителей, а украли его у природы...:-).

И такой синал он получает не от воздуха, не от влаги, не от механического воздействия, а от кратковременного светового излучения, содержащего красную часть спектра .

 

А до получения такого сигнала проросток находится в так называемом этиолированном состоянии. В котором он имеет бледный вид и крючковатую согбенную форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты почечки (точки роста) при продирании через тернии к звездам, и он сохранится, если рост продолжится в темноте и растение будет оставаться в этом этиолированном состоянии.

 

Для вывода растения из такого состояния достаточно ежедневного кратковременного освещения продолжительностью от 5 до 10 минут.

 

  • Красный свет

 

Почему это происходит - еще немного теории. Оказывается, кроме хлорофилла, в любом растении есть еще один замечательный пигмент, имеющий название - фитохром. (Пигмент - это белок, имеющий избирательную чувствительность к определенному участку спектра белого света).

Особенность фитохрома заключается в том, что он может принимать две формы с разными свойствами под воздействием красного света (660 нм) и дальнего красного света (730 нм), т.е. он обладает способностью к фотопревращению. Причем поочередное кратковременное освещение тем или другим красным светом аналогично манипулированию любым выключателем, имеющим положение "ВКЛ-ВЫКЛ", т.е. всегда сохраняется результат последнего воздействия.

Это свойство фитохрома обеспечивает слежение за временем суток (утро-вечер), управляя периодичностью жизнедеятельности растения. Более того, светолюбивость или теневыносливость того или иного растения также зависит от особенностей имеющихся в нем фитохромов. И, наконец, самое главное - цветением растений также управляет... фитохром! Но об этом - в следующий раз.

 

А пока вернемся все же к нашему проростку (ну почему ему так не везет...) Фитохром, в отличие от хлорофилла, есть не только в листьях, но и в семени. Участие фитохрома в процессе прорастания семян для некоторых видов растений таково: просто красный свет стимулирует процессы прорастания семян, а дальний красный - подавляет прорастание семян. (Возможно, что именно поэтому семена и прорастают ночью). Хотя, это и не является закономерностью для всех растений. Но в любом случае, красный спект более полезен (он стимулирует), чем дальний красный, который подавляет активность жизненных процессов.

 

Но предположим, что нашему семечку повезло и оно проросло, появившись на поверхности в этиолированном виде. Теперь достаточно кратковременного освещения проростка, чтобы запустить процесс деэтиоляции: скорость роста стебля снижается, крючок распрямляется, начинается синтез хлорофилла, семядоли начинают зеленеть.

И все это, благодаря красному свету. В солнечном дневном свете обычных красных лучей больше, чем дальних красных, поэтому днем высока активность растения, а ночью оно переходит в неактивную форму.

 

Как же различить эти два близких участка спектра "на глаз" для источника искусственного освещения ? Если вспомнить, что красный участок граничит с инфракрасным, т.е. тепловым излучением, то можно предположить, что чем теплее "на ощупь" излучение, тем больше в нем инфракрасных лучей, а значит и дальнего красного света. Подставьте руку под обычную лампочку накаливания или под люминесцентную лампу дневного света - и почувствуете разницу.

 

  • Синий свет

 

Ну вот, с красным светом немного разобрались. А теперь вернемся к нашим баранам, точнее - фазанам из знаменитой формулы, которые олицетворяют собой фиолетово-синюю область спектра. И попытаемся разобраться, как же влияет на жизнь проростка синий свет. Заметим, что желто-зеленая часть спектра практически никак не влияет: ни холодно от него - ни жарко.

 

Итак, синий свет - чем же он хорош или плох. На самом деле - синий цвет играет также важную роль в жизни растений, благодаря другому пигменту - криптохрому, который реагирует на синий свет в диапазоне от 400 до 500 нм.

Для взрослых растений синий цвет, в частности, регулирует ширину устьиц листьев, управляет движением листьев за солнцем, угнетает рост стеблей.

 

Применительно к прорастающему растению очень важна роль синего света в сдерживании роста стебля и гипокотиля, т.е. в ограничении "вытягивания" рассады. Синий свет также угнетает прорастание семян.

Кроме того, синий свет управляет изгибом проростка и стебля: со стороны источника синего света рост клеток тормозится, поэтому стебль изгибается в сторону источника света. Наверное, все наблюдали рассаду, согнутую в сторону окна - это из-за синего света. Название этого явления - фототропизм.

Синий свет (а к нему можно отнести и ультра-фиолетовую часть спектра) стимулирует деление клеток, но тормозит их растяжение. Кстати, именно поэтому для альпийских растений, растущих на высокогорных лугах с большим процентом ультрафиолета, характерна розеточная, низкорослая форма. А при недостатке синего света (например, в загущенных посадках или под стеклом) растения вытягиваются.

 

  • Практические выводы

 

Можно ли из всего сказанного выше сделать какие-то практические выводы применительно к выращиванию рассады ? Давайте попробуем.

При этом нас будет интересовать выращивание рассады ранней весной в квартире в условиях короткого светового дня, требующего применения источников искусственного освещения. Здесь рассаду поджидает много неприятностей, связанных с особенностями освещения, поэтому вмешательство человека и его правильное поведение чрезвычайно важны. Гораздо проще дело обстоит в более поздее время года и в условиях открытого воздуха (в саду) - там регулирующую роль берет на себя солнце.

 

Первый вопрос - где лучше проращивать рассаду: на свету или в темноте ?

 

• На свету, на подоконнике.

Положительная сторона - сразу же после прорастания проростки гарантированно получат дозу света, тот самый сигнал, который выведет их из состояния прорастания. Отрицательная сторона - возможно тормозящее, угнетающее воздействие красных и синих лучей на прорастание семян.

• В темноте или закрытом от света месте.

Положительная сторона - больше шансов на прорастание, т.к. исключено угнетающее действие света.

Отрицательная сторона - если вовремя не отреагировать на появившиеся всходы, то велика вероятность получения вытянутой рассады.

 

Из практических соображений первый вариант более предпочтителен в тех случаях, когда не всегда есть возможность регулярного контроля за состоянием рассады.

Но мне кажется, что возможен еще и компромиссный, хотя и менее удобный вариант: днем плошки с посеянными семенами держать в темном месте, а на ночь выставлять их на подоконник к свету. Тогда и волки сыты будут и овцы - целы... Семена ночью прорастут, а утром - солнышко вот оно.

Ну и самый экзотический вариант (когда погода пасмурная или окна северные)- утром, обнаружив проростки, в течениие 10 минут светить на них достаточно ярким белым светом с помощью какого-либо светильника.

 

Второй вопрос - чем подсвечивать взошедшую, уже растущую рассаду ?

 

При выборе светильника в первую очередь нужно обращать внимание на его спектральную характеристику. При этом яркость и мощность решающего значения не имеют.

К сожалению, информация о спектре большинства бытовых светильников отсутствует, поскольку не входит категорию нормируемых параметров. А приводимая иногда в рекламе информация с трудом поддается проверке из-за сложности спектральных измерений, к тому же требующих специальных измерительных приборов.

Замечу, что речь не идет о специальных профессиональных светильниках, а лишь только о бытовой осветительной продукции.

 

Тем не менее, минимальная информация качественного характера общеизвестна и из ее анализа можно сделать какие-то предположения.

Обычные лампы накаливания не годятся, т.к. в их спектре много желтого и инфракрасного излучения, но мало синего света.

Более удачно применение люминесцентных светильников дневного света, спектр свечения которых более равномерен и не содержит инфракрасных (тепловых) лучей.

И хотя в нем есть какая-то доля излучения желто-зеленой части спектра, но она, хотя и не дает пользы, но и вреда особого не приносит, т.к. хлорофилл просто-напросто отражает этот свет. В то же время присутствие синей составляющей в их излучении будет способствовать торможению роста стеблей, тем самым препятствуя вытягиванию рассады.

Естественно, любые искусственные светильники разумно использовать только в вечерние и ранне-утренние часы, днем лучше пользоваться естественным освещением от окна.

 

И в заключение - немного собственного опыта (совсем свежего).

В этом году появилось желание сдвинуть посевную кампанию на месяц-полтора в более раннюю сторону (январь-февраль) с тем, чтобы освободить апрель для аналогичной деятельности в саду в открытом грунте.

Сказано - сделано. И в середине-конце января с интервалом в неделю было засеяно семенами некоторое количество плошек. Ну, а дальше события развивались по сценарию, описанному выше. Единственной проблемой было только то обстоятельство, что эту вот статью я тогда еще не успел прочитать, по той простой причине, что еще не написал ее. Поэтому все делалось практически вслепую.

И тем не менее сейчас (в начале апреля) на подоконнике днем, и на столе под лампой - вечером красуется примерно 20-30 плошек с неплохо выглядящей цветочной рассадой. А шесть штучек пеларгоний (по UNWINS'овской терминологии - гераней) чернолистных уже стоят распикированными в горшочки и уже с фигурными листьями (правда, пока еще не черными).

 

Но оставим хвастовство и вернемся к лампе. Это просто настольная лампа дневного света, по всей видимости - люминесцентная, но бездроссельная, а потому - совершенно бесшумная. Куплена в обычном магазине, торгующем бытовыми светильниками.

Лампа имеет массивное основание, на котором крепится кронштейн со светильником. Светильник - прямоугольной (овальной) формы, лампа - U-образная трубка люминесцентная. У кронштейна очень много степеней свободы, поэтому светильник легко и просто премещается в пространстве и принимает любое положение. Освещает достаточно равномерно и без подогрева площадь примерно в половину квадратного метра. Прошлой весной такой одной лампы хватило, чтобы вырастить с добрую сотню видов растений рассадой. Ну а в межсезонье ее можно использовать по прямому назначению.

В частности, для экрана компьютера нужен полумрак, а при работе с бумажными текстами очень помогает такая настольная лампа, в том числе и для написания статьи про неё саму.

 

Да, чуть было не забыл расшифровать странный подзаголовок этой статьи.

 

Каждый Охотник Желает Знать - Где Сидит Фазан ? - на этот, казалось бы, риторический вопрос можно дать важный для садовода ответ:

Каждый Фазан Сидит там, Где Зеленеет Овес.

Из которого следует, что Красный, Фиолетовый и Синий цвета очень нужны растениям, а Зеленый и Оранжевый - практически бесполезны...:-)

 

 

Источник: http://humangarden.ru/books/spectr.htm

Влияние спектра света на рост растений

 

 

КПД светодиодов в основном колеблется 30 до 55 %.

 

Спектральная характеристика белых светодиодов приближена к ЭСЛ однако имеет более широкую составляющую.

 

Красный светодиод 1Ватт выдает 30-40лм, а синий 20-30лм. Белый в среднем 100-110лм.

 

В солнечный летний день на один квадратный метр приходится около 2000 микромоль на метр кв. Светодиодная лампа 130ватт с расстояния 30см выдает примерно 1570 микромоль на метр кв.

 

Есть такие тонкости: для огурцов допустимое соотношение синего (400-500 нм), зеленого (500–600 нм) и красного (600–700 нм) излучения составляет 20:40:40%, а для томата – 20:15:65%. То есть, при длительном воздействии красного света (более 40%) огурцы будут погибать. Отсюда вывод: для огурцов надо ограничивать доли красных лучей. А вот томаты будут рады большему проценту красных лучей.

 

график для примера - эффективности nm.

 

Наиболее подходящим спектром для растений является красный 660нм,630нм (менее полезный) , в синей зоне 445нм.

 

320-400 нм – регуляторная роль в развитии растений, поэтому желательно присутствие этого излучения в небольших количествах в общем лучистом потоке.*(УФ диапазон,советуют разбросать несколько штук). Полезное влияние УФ ,доказано не в одном рапорте.

 

То, что растениям не нужен зелёный свет – это ошибка из-за того, что кривая фотосинтеза в зелёном спектре имеет прогиб по отношению к красному и синему свету. Установлено, что зелёный свет полезен для фотосинтеза плотных листьев, стеблей (а у НАС именно такие растения). Благодаря своей высокой проникающей способности, зелёный свет хорошо проникает к листьям нижних ярусов, густых посевов растений.

 

В результате исследований было показано, что наиболее благоприятными для выращивания светолюбивых растении являются интенсивности в пределах 150–220 Вт/м2, а оптимальный состав излучения имеет следующее соотношение энергий по спектру: 30% – в синей области (380–490 нм), 20% в зеленой (490–590 нм) и 50% – в красной области (600–700 нм). С использованием такого искусственного освещения получены урожаи, в несколько раз более высокие, чем при обычном освещении, причем за более короткие (в 1,5–2 раза!) сроки.

 

Ученые установили особенность красных лучей (600-690 нм) низкой интенсивности (не выше 620 лк) активно воздействовать на физиологические процессы в растениях, чувствительных к смене света темнотой и обратно (фотопериодических). Это в первую очередь относится к тепличным томатам и огурцам. При облучении их в вечерние сумеречные часы указанным светом специальных ламп был получен эффект ускорения развития, усиления ростовых процессов и повышения урожайности.

Инфракрасные лучи различно воздействуют на растения. На ближний инфракрасный свет (до 1100 нм) слабо реагируют томаты и довольно сильно огурцы. Этот диапазон света действует на растяжение подсемядольного колена, стеблей и побегов. Ближнее излучение при низких температурах может частично поглощаться хлорофиллом и не перегревать лист, что будет полезно для фотосинтеза.

 

УФ по крайне мере как в литературе ( влияет на метаболические процессы в растении).

 

  • Ультрафиолетовые лучи

 

Средние ультрафиолетовые лучи (длиной 280-315 нанометров) действуют наподобие пониженных температур, способствуя процессу закаливания растений и повышая их холодостойкость. На хлорофилл ультрафиолетовые лучи практически не действуют, у растений, перемещённых из темноты на свет (этиолированных*), хлорофилл интенсивно образуется. Длинные ультрафиолетовые лучи (длиной 315-380 нанометров) необходимы для обмена веществ и роста растений. Они так же задерживают вытягивание стеблей и повышают содержание витамина С.

 

Лучи 280-320 нм оказывают вредное воздействие на рост и развитие растений.

 

Длина волны ультрафиолетовых лучей, доходящих до земли, в которых растение испытывает потребность, колеблется в пределах 280-400 нм

 

Источник: https://jahforum.org/topic/3007

Растения и свет

 

 

Не у всех "городских" любителей дачной растительности, есть условия для выращивания рассады на солнечном подоконнике или лоджии. У меня тоже их нет. Насколько важен свет для растений я уже понял после неудавшихся опытов, и захотел разобраться ( как технарь) как именно свет влияет на рост растений. Благо, есть много статей, и собственные возможности для экспериментов. Начиная с этой заметки я буду популярно излагать - пересказывать переработанную через собственный опыт, информацию.

 

Свет, в совокупности с водой и углекислым газом, в результате фотохимических реакций, обеспечивает синтез (создание) новых растительных клеток. Этот процесс называется фотосинтезом.

В школьных учебниках упоминался всегда именно солнечный свет. Это спектр (смесь) из отдельных цветов, для запоминания которых мы в школе зубрили “каждый охотник желает знатьгде сидит фазан”

 

Каждая часть солнечного спектра (каждый цвет) имеет свою длину волны, которая измеряется в нанометрах (нм). Ультрафиолетовая часть лежит ниже 380 нм, фиолетовая – в зоне 380-430 нм, синяя – 430-490 нм, зеленая – 490-570 нм, желтая – 570-600 нм, красная – 600-780 нм, инфракрасная – выше 780 нм.

С увеличением высоты Солнца происходят изменения в соотношении отдельных составляющих спектра. В начальной стадии подъема Солнца над горизонтом в его лучах отсутствует свет от синего до ультрафиолетового. Зато красного много. Чем выше солнце – тем меньше красного и тем больше синего (облака голубые). Т.е. в течение дня происходит изменение спектрального состава солнечного света.

 

Каждому участку спектра света предназначена своя роль в жизнедеятельности растений:

Лучи с длиной волны 400-510 нм - первый максимум (440нм) поглощения хлорофиллом (синтез клеток)

Лучи с длиной волны 510-610 нм - зона спектра ослабленного фотосинтеза.

Лучи с длиной волны 610-700 нм - зона максимального (660нм)поглощения хлорофиллом и максимального фотосинтеза.( рост клеток, растягивание)

 

Растения также нуждаются в небольших дозах ультрафиолета и инфракрасных лучах.

После 720нм (дальний красный цвет) фотосинтез не прекращается - пока просто недостаточно изучено поведение растений. Чтобы провести эксперимент нужны светодиоды соответствующей длины волны, но на сегодняшний день их невозможно найти и они вовсе недоступны по цене.

 

Светокультура - это термин, характеризующий выращивание растений при искусственном освещении. Она складывается из таких факторов: спектр света (определенные длины волн),количество света (люксы, люмены, ватты и так далее, c учетом расстояния от светильников), длительность и периодичность освещения (фотопериод).

 

При фотосинтезе растений энергия света преобразовывается в химическую энергию - этот процесс происходит во всех зеленых растениях. На самом деле, наука объясняет, что интенсивность любой фотохимической реакции определяется не количеством поглощенной энергии, а числом поглощенных фотонов (квантов) света. При этом научно доказано, что в разных лучах солнечного света величина этих квантов различна.

Эта закономерность определенная- чем меньше длина волны (синий), тем «крупнее» сами кванты и больше их энергия. С ростом длины световой волны (красный) кванты «мельчают», их энергия МЕНЬШЕ, но их ЧИСЛО БОЛЬШЕ!!!

Это следует понимать так, что результат фотосинтеза зависит от количества квантов, а не от их энергии!

Этим и объясняется интенсивность роста зеленой массы под воздействием красного света. При облучении синим светом получаются коренастые растения с короткими междуузлиями, не происходит вытягивания растений, в них накапливается аскорбиновая кислота, повышается холодостойкость и обеспечивается световая закалка.

Значит можно сделать практический вывод - ростом растений можно управлять с помощью спектра! Я в этом убедился!

 

В процессе естественного отбора растения приспособились к поглощению именно тех лучей, энергия которых используется в процессе фотосинтеза наиболее эффективно. Это синие лучи с длиной волны 440 нанометров и красные 660 нм.

 

Поэтому, используя способы исскуственного освещения растений , в том числе светодиодные, для подсветки или досветки растений, вместе с ними необходимо знать соответствующую технологию для выращивания отдельных каждой группы или вида, растений . Даже при естественном освещении огородники получают очень разные результаты, потому как имеют разные условия выращивания, знания, опыт, условия и т.д.

 

Вероятно при исскуственном досвечивании рассады можно уравнять шансы вырастить одинаковую рассаду. Но для этого нужны дополнительные знания. Ведь режим свечения (светокультура), фотопериод, строго связан с вегетационным периодом. И очень сильно зависит от момента подкормки и полива растений. Сколько светить, каким спектром, какая мощность светового потока в каждой фазе жизни растюшки и как часто чередовать день-ночь - все это пока не имеет научных рекомендации.

Наши ученые агрономы, тысячи которых на бюджетные деньги десятки лет проводили исследования и эксперименты, не спешат делиться с простыми дачниками – огородниками. Скорее всего их исследования на диване не дали результатов, однако надеятся нужно.

 

Поэтому нам с вами самим приходится экспериментировать, пробовать и учиться на своих ошибках. И обмениваться друг с другом ПРАВИЛЬНОЙ информацией.

 

В различные периоды (фазы) жизни, отношение растюх к свету различно:

 

1. для набухания и прорастания семян cовсем не нужен свет.

 

2. При появлении всходов он необходим даже малотребовательным растениям. Недостаток видимых лучей и слабая общая освещенность в этот период приводят к вытягиванию и даже гибели всходов.

 

3. При выращивании рассады, когда идет интенсивный рост листьев и стеблей, все овощные растения предъявляют самые высокие требования к интенсивности солнечной радиации.

 

4. После ослабления ростовых процессов при максимальной площади листьев снижается потребность в освещении в связи с накоплением запаса пластических веществ. (капуста, корнеплоды).

5.В репродуктивном периоде — при цветении, образовании семян и плодов — растения снова предъявляют повышенные требования к интенсивности солнечной радиации.

 

 

Продолжительность освещения, длина дня и ночи оказывают влияние на процессы роста и развития овощных растений. Реакция растений на длину дня связана главным образом с районом их происхождения. Все овощные растения, родиной которых являются умеренная и субтропическая зоны,

быстрее переходят к репродуктивному периоду в средней и северной зонах, где летом день продолжается 15...17 ч. На юге. при коротком дне (10...11 ч) у них задерживается наступление цветения. Так, редис образует корнеплод до 300 г, укроп сильно ветвится, имеет короткие междоузлия и очень много листьев. Овощные растения, происходящие из тропических стран, в северных районах при длинном дне, переходят к репродуктивному периоду позже и дают урожаи ниже, чем на юге.

Продолжительность дня влияет на качественные изменения только при прохождении фаз вегетативного роста, в дальнейшем после начала плодоношения, она уже не имеет значения.

 

Из собственных наблюдений я заметил, что сложнее всего светокультура огурцов. Они очень сильно тормозятся синим светом, не любят прямого света - им нужен рассеянный, и кроме того лишний красный свет как-то влияет на цветение (?). нужно экспериментально подбирать для огурцов спектр. (мне оказалось проще их сразу в парник посадить). А томаты и перцы любят красный. Томаты больше всех. Цветы менее требовательны.

 

Хочу добавить важное и многократно проверенное: недодал света рассаде - недополучишь урожай. в будущем. Поэтому рассада должна быть упитанная, правильно развитая. "лучше шире,чем выше". В этот период надо строго следить за влажностью почвы и воздуха - все важно.

 

 

Источник: https://www.forumhouse.ru/entries/1877/

Свет в жизни растений

 

Cвет в жизни растений играет определяющую роль. Ведь световая энергия определяет процесс фотосинтеза. Фотосинтез – поглощение света растением через листья.

 

 В листьях содержится пигмент, (пигмент - окрашенное вещество в организме, участвующее в его жизнедеятельности и придающее цвет коже, волосам, чешуе, цветкам, листьям) называемый хлорофиллом, и именно через него растение поглощает световую энергию.

 

Активный рост растения, увеличение листьев происходит путем питания растения углеводородами -  обычными органическими соединениями. Их вырабатывает растение в процессе фотосинтеза. Углеводороды – результат реакции воды и двуокиси углерода. Однако продуктом, который вырабатывается в завершении фотосинтеза, является кислород – соединение, без которого не могут существовать живые организмы.

 

  • Факторы влияющие на фотосинтез

 

Существует ряд факторов, напрямую влияющих на процесс фотосинтеза растений. Прежде всего, интенсивность процесса напрямую зависит от

 

- содержания двуокиси углерода

 

- температуры окружающего воздуха

 

- достаточного обеспечения растения водой

 

- интенсивности света.

 

Однако для того, чтобы растение развивалось оптимально, важно не только наличие световой энергии, но и спектр света, а также длительность светового периода, когда растение бодрствует, и темного периода, когда оно отдыхает.

 

Если правильно регулировать длительность светового дня, то стадиями роста растения можно управлять. Так, у растений длинного дня можно регулировать их вегетативную стадию, а также время цветения. В свою очередь, для растений короткого дня световой период должен оставаться на определенном уровне, ведь слишком длительный период света может существенно нарушить время его цветения. Существует и категория растений, которые растут в зависимости от наличия света, но при этом продолжительность темного и светлого периода суток на них не влияет.

Таким образом, правильно регулируя свет, можно достичь качественных результатов в процессе выращивания разных видов растений.

 

  • Что же такое спектр света, и как он влияет на развитие растений?

 

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца – это лучи, которые имеют разную длину волны. Таким образом, свет – это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах  измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин.

 

 

Источник: https://www.promgidroponica.ru/vsjo-o-gidroponike/svet_dlja_rastenij

Сколько и какого света нужно растениям

 

 

Фотосинтeз

 

Многочисленными исследованиями установлено, что сухая масса растения на 45% состоит из углерода, который растение получает только из воздуха, но не из почвы. Усвоение растениями углекислоты происходит при участии света, в сложном физиологическом процессе, называемом фотосинтезом. Интенсивность фотосинтеза зависит от многих внешних условий, но, в первую очередь, от света. Наиболее часто интенсивность фотосинтеза соответствует цифрам в пределах от 5 до 25 мг CO2/дм2/час. Кактусы, как медленно растущие растения, имеют низкую интенсивность фотосинтеза (около 3-5 мг CO2/дм2/час).

 

Если в выборе температурных условий есть определённая ясность (оптимальная температура для кактусов +30-35°С. Длительное время мои экземпляры на точке роста имели 45°С. Если растениям это не вредило, но рост задерживало сильно), то вопрос о световом насыщении нуждается в дополнительных исследованиях. Известно только, что световое насыщение у светолюбивых растений наступает при интенсивности 1/3–1/4, а в некоторых случаях до 1/2 от интенсивности полной солнечной радиации (полуденная освещённость в безоблачный летний день), т.е. увеличение освещённости до полной не даёт увеличения фотосинтеза. Практически это значит, что кактусы растут только весной и осенью, когда имеет место ослабленное солнечное освещение. Сами растения приспосабливаются к внешним условиям. Так, опунция располагает свои стебли параллельно солнечным лучам с целью получить уменьшенную дозу солнечной радиации. Как правило, растения пустынь имеют несколько сниженное содержание хлорофилла. Признаком этому служит бледная окраска. Наиболее интенсивно фотосинтез идёт при красно-оранжевых лучах, слабее при сине-фиолетовых и почти не происходит при зелёном свете.

 

  • Спектральный состав света

 

Этот сугубо теоретический вопрос имеет важное практическое значение. Обычно любители совершенно незаслуженно не придают ему должного внимания, а порой совершенно игнорируют. Думаю, что любитель растений должен знать, какие процессы в растении и почему происходят в часы утренние, дневные и вечерние; чем отличается свет искусственных источников от естественного. Знание этого вопроса позволит отказаться от распространённого даже среди квалифицированных любителей неправильного мнения о невозможности выращивания кактусов под искусственными источниками света.

 

 

Свет можно рассматривать как энергию электромагнитных колебаний с определённой длиной волны. Единицей измерения длины волны служит нанометр (миллимикрон). По спектру всю солнечную энергию можно подразделить на три основные части:

 

ультрафиолетовые лучи (10-400 нм);

 

видимое излучение (400-760 нм);

 

инфракрасное излучение (более 760 нм).

 

По физиологическому действию на растения, определённые участки спектра различаются следующий образом.

 

Лучи с длиной волны до 280 нм – убивают растение.

Лучи с длиной волны 280-315 нм – губительны для большинства растений.

Лучи с длиной волны 315-400 нм – растение становится короче, а листья толще.

Лучи с длиной волны 400-510 нм – второй максимум поглощения хлорофиллом.

Лучи с длиной волны 510-610 нм – зона спектра ослабленного фотосинтеза.

Лучи с длиной волны 610-700 нм – зона максимального поглощения хлорофиллом и максимальной фотосинтетической активности.

Лучи с длиной волны 700-1000 нм – мало изучены.

 

Длина волны ультрафиолетовых лучей, доходящих до земли, в которых растение испытывает потребность, колеблется в пределах 280-400 нм.

 

 

Источник http://m5zg65y.nnqwyylsovygcltdn5wq.cmla.ru/

Факторы, влияющие на интенсивность фотосинтеза

 

Зеленый лист – источник жизни на нашей планете. Если бы не зеленые растения, на Земле не было бы ни животных, ни людей. Так или иначе, растения служат источником пищи для всего животного мира.

 

Человек использует энергию не только солнечных лучей, падающих на землю сейчас, но и тех, что падали на нее десятки и сотни миллионов лет назад. Ведь и уголь, и нефть, и торф – химически измененные остатки растений и животных, живших в те далекие времена.

 

В последние десятилетия к проблеме фотосинтеза приковано внимание ведущих специалистов ряда отраслей естествознания, ее различные аспекты всесторонне и глубоко исследуются во многих лабораториях мира. Интерес определяется прежде всего тем, что фотосинтез составляет основу энергообмена всей биосферы.

 

Интенсивность фотосинтеза зависит от многих факторов. Интенсивность света, необходимая для наибольшей эффективности фотосинтеза, у различных растений различна. У теневыносливых растений максимум активности фотосинтеза достигается примерно при половине полного солнечного освещения, а у светолюбивых растений – почти при полном солнечном освещении.

 

У многих теневыносливых растений не развивается палисадная (столбчатая) паренхима в листьях, и имеется только губчатая (ландыш, копытень). Кроме того, эти растения имеют более крупные листья и более крупные хлоропласты.

 

Также на интенсивность фотосинтеза влияет температура окружающей среды. Наибольшая интенсивность фотосинтеза наблюдается при температуре 20–28 °С. При дальнейшем повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания возрастает. Когда интенсивности фотосинтеза и дыхания совпадают, говорят о компенсационном пункте.

 

Компенсационный пункт изменяется в зависимости от интенсивности света, повышения и понижения температуры. Например, у холодостойких бурых морских водорослей он соответствует температуре около 10 °С. Температура влияет, в первую очередь, на хлоропласты, у которых в зависимости от температуры изменяется структура, что хорошо видно в электронном микроскопе.

 

Очень большое значение для фотосинтеза имеет содержание углекислого газа в окружающем растение воздухе. Средняя концентрация углекислоты в воздухе составляет 0,03% (по объему). Понижение содержания углекислого газа неблагоприятно влияет на урожай, а его повышение, например до 0,04% может повысить урожай почти в 2 раза. Более значительное повышение концентрации вредно для многих растений: например, при содержании углекислого газа около 0,1% растения томатов заболевают, у них начинают скручиваться листья. В оранжереях и теплицах можно повысить содержание углекислого газа, выпуская его из специальных баллонов или давая испаряться сухой углекислоте.

 

Свет разных длин волн также по-разному влияет на интенсивность фотосинтеза. Впервые интенсивность фотосинтеза в различных лучах спектра исследовал физик В. Добени, показавший в 1836г., что скорость фотосинтеза в зеленом листе зависит от характера лучей. Методические погрешности при проведении эксперимента привели его к неправильным выводам. Ученый поместил отрезок побега элодеи в пробирку с водой срезом вверх, освещал пробирку, пропуская солнечный свет через цветные стекла или окрашенные растворы, и учитывал интенсивность фотосинтеза по количеству пузырьков кислорода, отрывающихся с поверхности среза за единицу времени. Добени пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света, а наиболее яркими лучами в то время считались желтые. Этой же точки зрения придерживался и Джон Дрепер (1811–1882), который изучал интенсивность фотосинтеза в различных лучах спектра, испускаемых спектроскопом.

 

Роль хлорофилла в процессе фотосинтеза доказал выдающийся российский ботаник и физиолог растений К.А. Тимирязев. Проведя в 1871–1875 гг. серию опытов, он установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось до него. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым.

На основании этих данных немецкий физиолог растений Теодор Вильгельм Энгельман в 1883 г. разработал бактериальный метод изучения ассимиляции углекислого газа растениями.

 

Он предположил, что если поместить в каплю воды клетку зеленого растения вместе с аэробными бактериями и осветить их разноокрашенными лучами, то бактерии должны концентрироваться у тех участков клетки, в которых сильнее всего разлагается углекислый газ и выделяется кислород. Чтобы проверить это, Энгельман несколько усовершенствовал световой микроскоп, укрепив над зеркальцем призму, которая разлагала солнечный свет на отдельные составляющие спектра. В качестве зеленого растения Энгельман использовал зеленую водоросль спирогиру, крупные клетки которой содержат длинные спиральные хроматофоры.

 

Поместив в каплю воды на предметном стекле кусочек водоросли, Энгельман внес туда же немного аэробных бактерий, после чего, рассмотрел препарат под микроскопом. Оказалось, что в отсутствии призмы приготовленный препарат освещался ровным белым светом, и бактерии равномерно распределялись вдоль всего участка водоросли. В присутствии призмы отраженный от зеркальца луч света преломлялся, освещая участок водоросли под микроскопом светом с разной длиной волны. Спустя несколько минут, бактерии сконцентрировались на тех участках, которые были освещены красным и синим светом. На основании этого Энгельман сделал вывод о том, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих.

 

 

Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 120 лет назад.

Поглощенная хлорофиллом световая энергия принимает участие в реакциях первого и второго этапов фотосинтеза; реакции третьего этапа являются темновыми, т.е. происходит без участия света. Измерения показали, что процесс восстановления одной молекулы кислорода требует минимум восьми квантов световой энергии. Таким образом, максимальный квантовый выход фотосинтеза, т.е. число молекул кислорода, соответствующее одному кванту поглощенной растением световой энергии, составляет 1/8, или 12,5%.

 

Р.Эмерсон с сотрудниками определили квантовый выход фотосинтеза при освещении растений монохроматическим светом различной длины волны. При этом установлено, что выход остается постоянным на уровне 12% в большей части видимого спектра, но резко снижается вблизи дальней красной области. Это снижение у зеленых растений начинается при длине волны 680 нм. При длине больше 660 нм свет поглощает только хлорофилл a; хлорофилл b имеет максимум поглощения света при 650 нм, а при 680 нм практически свет не поглощает. При длине волны больше, чем 680 нм, квантовый выход фотосинтеза может быть доведен до максимальной величины 12% при условии, что растение одновременно будет освещаться также светом с длиной волны 650 нм. Иначе говоря, если свет, поглощаемым хлорофиллом а дополняется светом, поглощаемый хлорофиллом b, то квантовый выход фотосинтеза достигает нормальной величины.

 

Усиление интенсивности фотосинтеза при одновременном освещении растения двумя лучами монохроматического света различной длины волны по сравнению с его интенсивностью, наблюдаемой при раздельном освещении этими же лучами, получило название эффекта Эмерсона. Опыты с различными комбинациями дальнего красного света и света с более короткой длиной волны над зелеными, красными, синезелеными и бурыми водорослями показали, что наибольшее усиление фотосинтеза наблюдается в том случае, если второй луч с более короткой длиной волны поглощается вспомогательнымих пигментами.

 

У зеленых растений такими вспомогательными пигментами являются каротиноиды и хлорофилл b, у красных водорослей – каротиноиды и фикоэритрин, у синезеленых – каротиноиды и фикоцианин, у бурых водорослей – каротиноиды и фукоксантин.

 

Дальнейшее изучение процесса фотосинтеза привело к заключению, что вспомогательные пигменты передают от 80 до 100% поглощенной ими световой энергии хлорофиллу а. Таким образом, хлорофилл ааккумулирует световую энергию, поглощаемую растительной клеткой, и затем использует ее в фотохимических реакциях фотосинтеза.

Позже было обнаружено, что хлорофилл а присутствует в живой клетке в виде форм с различными спектрами поглощения и различными фотохимическими функциями. Одна форма хлорофилла а, максимум поглощения у которой соответствует длине волны 700 нм, принадлежит к пигментной системе, получившей название фотосистема I, вторая форма хлорофилла а с максимумом поглощения 680 нм, принадлежит к фотосистеме II.

 

Итак, в растениях была открыта фотоактивная пигментная система, особенно сильно поглощающая свет в красной области спектра. Она начинает действовать уже при ничтожной освещенности. Кроме того, известна и другая регуляторная система, которая избирательно поглощает и использует для фотосинтеза синий цвет. Эта система работает при достаточно сильном свете.

Установлено также, что фотосинтетический аппарат одних растений в значительной степени использует для фотосинтеза красный свет, других – синий.

 

Для определения интенсивности фотосинтеза водных растений можно использовать метод подсчета пузырьков кислорода. На свету в листьях происходит процесс фотосинтеза, продуктом которого является кислород, накапливающийся в межклетниках. При срезании стебля избыток газа начинает выделяться с поверхности среза в виде непрерывного тока пузырьков, быстрота образования которых зависит от интенсивности фотосинтеза. Данный метод не отличается большой точностью, но зато прост и дает наглядное представление о зависимости процесса фотосинтеза от внешних условий.

 

Опыт 1. Зависимость продуктивности фотосинтеза от интенсивности света

 

Материалы и оборудование: элодея; водные растворы NaHCO3, (NH4)2CO3 или минеральная вода; отстоявшаяся водопроводная вода; стеклянная палочка; нитки; ножницы; электролампа мощностью 200 Вт; часы; термометр.

 

1. Для опыта отбирали здоровые побеги элодеи длиной около 8 см интенсивного зеленого цвета с неповрежденной верхушкой. Их подрезали под водой, привязывали ниткой к стеклянной палочке и опускали верхушкой вниз в стакан с водой комнатной температуры (температура воды должна оставаться постоянной).

 

2. Для опыта брали отстоявшуюся водопроводную воду, обогащенную СО2 добавлением NaHCO3 или (NH4)2CO3, или минеральную воду, и выставляли стакан с водным растением на яркий свет. Наблюдали за появлением пузырьков воздуха из среза растения.

 

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, данные записывали в таблицу, определяли средний результат.

 

4. Стакан с растением удаляли от источника света на 50–60 см и повторяли действия, указанные в п. 3.

 

5. Результаты опытов сравнивали и делали вывод о различной интенсивности фотосинтеза на ярком и слабом свету.

 

Результаты опытов представлены в таблице 1.

 

Вывод: при использованных интенсивностях света интенсивность фотосинтеза увеличивается с ростом интенсивности света, т.е. чем больше света, тем лучше идет фотосинтез.

 

Таблица 1. Зависимость фотосинтеза от интенсивности света

 

 

Опыт 2. Зависимость продуктивности фотосинтеза от спектрального состава света

 

Материалы и оборудование: элодея; набор светофильтров (синий, оранжевый, зеленый); семь высоких широкогорлых банок; отстоявшаяся водопроводная вода; ножницы; электролампа мощностью 200 Вт; часы; термометр; пробирки.

 

1. Пробирку наполняли на 2/3 объема отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель подрезали под водой.

 

2. В высокую широкогорлую банку помещали синий светофильтр (круговой), под фильтр – пробирку с растением и выставляли банку на яркий свет так, чтобы он попадал на растение, походя через светофильтр. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

 

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, пределяли средний результат, данные заносили в таблицу.

 

4. Синий светофильтр заменяли на красный и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

 

5. Результаты опытов сравнивали и делали вывод о зависимости интенсивности фотосинтеза от спектрального состава света.

 

Результаты опыта представлены в таблице 2.

 

 

Вывод: процесс фотосинтеза в оранжевом свете идет очень интенсивно, в синем замедляется, а в зеленом практически не идет.

 

Опыт 3. Зависимость интенсивности фотосинтеза от температуры

 

Материалы и оборудование: элодея; три высокие широкогорлые банки; отстоявшаяся водопроводная вода; ножницы; пробирки; электролампа мощностью 200 Вт; часы; термометр.

 

1. Пробирку на 2/3 объема наполняли отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель отрезали под водой.

 

2. В три широкогорлые банки наливали отстоявшуюся водопроводную воду разной температуры (от 14 °С до 45 °С), помещали пробирку с растением в банку с водой средней температуры (например, 25 °С) и выставляли прибор на яркий свет. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

 

3. Через 5 мин подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, определяли средний результат, данные заносили в таблицу.

 

4. Пробирку с растением переносили в банку с водой другой температуры и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

 

5. Результаты опытов сравнивали и делали письменный вывод о влиянии температуры на интенсивность фотосинтеза.

 

Результаты опыта представлены в таблице 3.

 

 

Вывод: в исследованном интервале температур интенсивность фотосинтеза зависит от температуры: чем она выше, тем лучше идет фотосинтез.

Таблица 3. Зависимость фотосинтеза от температуры

 

 

В результате проведенного нами исследования мы сделали следующие выводы.

 

1. Фотоактивная пигментная система особенно сильно поглощает свет в красной области спектра. Довольно хорошо поглощаются хлорофиллом синие лучи и очень мало зеленые, что объясняет зеленую окраску растений.

 

2. Проведенный нами опыт с веточкой элодеи убедительно доказывает, что максимальная интенсивность фотосинтеза наблюдается при освещении именно красным светом.

 

3. Интенсивность фотосинтеза зависит от температуры.

 

4. Фотосинтез зависит от интенсивности света. Чем больше света, тем лучше идет фотосинтез.

Результаты подобной работы могут иметь практическое значение. В тепличных хозяйствах с искусственным освещением, подбирая спектральный состав света, можно увеличить урожай. В Агрофизическом институте в Ленинграде в конце 1980-х гг. в лаборатории Б.С. Мошкова с использованием особых режимов освещения получали 6 урожаев томатов в год (180 кг/м2).

 

Растениям требуются световые лучи всех цветов. Как, когда, в какой последовательности и пропорции снабжать его лучистой энергией – это целая наука. Перспективы светокультуры очень велики: из лабораторных экспериментов она может превратиться в промышленное круглогодичное производство овощных, зеленых, декоративных и лекарственных культур.

 

Источники: http://sc.nios.ru (рисунки и схемы)

 

Литература:

 

Генкель П.А. Физиология растений

Кретович В.Л. Биохимия растений

Рейвн П., Эверт Р., Айкхорн С. Современная ботаника

Саламатова Т.С. Физиология растительной клетки

Что же такое спектр света, и как он влияет на развитие растений?

 

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца – это лучи, которые имеют разную длину волны. Таким образом, свет – это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах  измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин

 

 

Но в жизни растений наиболее важное значение имеет физиологически активная и фотосинтетическая активная радиация.

 

Самые важные лучи для растений – оранжевые (620-595 нм) и красные (720-600 нм). Эти лучи поставляют энергию для процесса фотосинтеза, а также «отвечают» за процессы, влияющие на скорость развития растения. Например, пигменты с пиком чувствительности в красной области спектра отвечают за развитие корневой системы, созревание плодов, цветение растений. Для этого в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра.

 

Так, к примеру, слишком большое количество красных и оранжевых лучей могут задержать цветение растения.

 

Также в фотосинтезе непосредственное участие принимают и синие, а также фиолетовые лучи (490-380нм). Кроме того, в их функции входит стимулирование образования  белков и регулирование скорости роста растения. Те растения, которые растут в природных условиях короткого дня, быстрее зацветают именно под воздействием этих лучей.

 

Пигменты с пиком поглощения в синей области отвечают за развитие листьев, рост растения и т.д. Растения, выросшие с недостаточным количеством синего света, например, под лампой накаливания, более высокие - они тянутся вверх, чтобы получить побольше "синего света". Пигмент, который отвечает за ориентацию растения к свету, также чувствителен к синим лучам.

 

 

Лучи, которые имеют длинную волну (315-380 нм), не позволяют растению чрезмерно «вытягиваться» и отвечают за синтез ряда витаминов. В то же время  ультрафиолетовые лучи, которые имеют длину волны 280-315 нм, могут повышать холодостойкость растений.

 

Таким образом, жизненно важными для развития растений не являются только желтые и зеленые лучи (565-490 нм).

 

Следовательно, при организации искусственного осветления растений необходимо в первую очередь учитывать их потребность в особенном спектре света.

 

 

Источник: https://jahforum.org/topic/3007

(098) 405-05-39

(050) 462-38-93

влияние света на растения

 

Солнечный свет — один из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества.

 

 

Основными характеристиками света являются его спектральный состав, интенсивность, суточная и сезонная динамика.

 

По спектральному составу солнечный свет неоднороден. В него входят лучи, имеющие различную длину волны. Из всего спектра для жизни растений важна фотосинтетическая активная (380-710 нм) и физиологически активная радиация (300-800 нм).

 

Причем, наибольшее значение имеют красные (720-600 нм) и оранжевые лучи (620-595 нм). Именно они являются основными поставщиками энергии для фотосинтеза и влияют на процессы, связанные с изменением скорости развития растения (избыток красной и оранжевой составляющей спектра задерживает переход растения к цветению).

 

Синие и фиолетовые (490-380нм) лучи, кроме непосредственного участия в фотосинтезе, стимулируют образование белков и регулируют скорость развития растения. У растений, живущих в природе в условиях короткого дня, эти лучи ускоряют наступление периода цветения.

Ультрафиолетовые лучи с длиной волны 315-380 нм задерживают «вытягивание» растений и стимулируют синтез некоторых витаминов, а ультрафиолетовые лучи с длиной волны 280-315 нм повышают холодостойкость.

 

Лишь желтые (595-565 нм) и зеленые (565-490 нм) не играют особой роли в жизни растений.

 

Учет потребностей растений в определенном спектральном составе света необходим при правильном подборе источников искусственного освещения. В комнатных условиях в качестве таковых наиболее удобно использовать люминесцентные лампы ЛБ и ЛДЦ.

 

Почти все комнатные растения светолюбивы, т.е. лучше развиваются при полном освещение, но различаются по теневыносливости. Принимая во внимание отношение растений к свету, их принято подразделять на три основные группы: светолюбивые, теневыносливые и  тенеиндифферентные.

Как и все живые организмы, растения обладают способностью адаптироваться к изменяющимся условиям. Эта способность различна у разных видов. Есть растения, довольно легко приспосабливающиеся к достаточному или избыточному свету, но встречаются и такие, которые хорошо развиваются только при строго определенных параметрах освещенности. В результате адаптации растения к пониженной освещенности несколько меняется его облик. Листья становятся темно-зелеными и немного увеличиваются в размерах (линейные листья удлиняются и становятся уже), начинается вытягивание междоузлий стебля, который при этом теряет свою прочность. Затем их рост постепенно уменьшается, т.к. резко снижается производство продуктов фотосинтеза, идущих на посторенние тела растения. При недостатке света многие растения перестают цвести.

 

При избытке света хлорофилл частично разрушается, и цвет листьев становится желто-зеленым. На сильном свету рост растений замедляется, они получаются более приземистыми с короткими междоузлиями и широкими короткими листьями.

 

Появление бронзово-желтой окраски листьев указывает на значительный избыток света, который вреден растениям. Если срочно не принять соответствующие меры, может возникнуть ожог.

 

Важными характеристиками светового режима является суточная и сезонная динамика.

 

Длина светового дня меняется в течение года. В умеренных широтах самый короткий день равен 8 ч., а самый длинный — более 16 ч.

 

Источник: http://www.floralworld.ru/care/light.html#planst2

Фотосинтез и Фотоморфогенез

 

"Каждый Фазан Сидит там, Где Зеленеет Овес"

 

 

Многие из садоводов-цветоводов, пробовавших выращивать рассаду, сталкивались с таким неприятным явлением, как вытягивание рассады в условиях недостаточной освещенности при посеве ранней весной.

Попробуем разобраться в причинах и попытаемся понять, как его предотвратить. Ну, а для начала - немного теории.

 

  • Спектр дневного света

 

Из школьного курса физики известно, что знаменитая формула: Каждый Охотник Желает Знать - Где Сидит Фазан описывает очередность расположения в спектре белого цвета семи основных цветов, если перечислять их в обратной последовательности (справа - налево):

________________________________________

фиолетовый синий голубой зеленый желтый оранжевый красный

390—440 440—480 480—510 510—575 575—585 585—620 630—770

________________________________________

 

Количественно цвет или спектральная составляющая характеризуется длиной волны, которая измеряется в нанометрах (нм). Белый свет занимает область длин волн от 400 до 800 нм. При этом фиолетовый расположен в левой (короткие волны) части (400 нм), а красный - в правой (длинные волны)части диапазона (800 нм).

В левой части - переход в область ультрафиолетового излучения, в правой - в область инфракрасного (теплового) излучения.

Замечу сразу, что применительно к жизни растений принято красный свет делить на просто красный (660 нм) и дальнийкрасный (730 нм). В чем их разница - об этом чуть ниже. Но это очень важные участки спектра.

 

Совсем детский вопрос: почему днем свет - белый, а окружающий нас мир - цветной ? Почему какие-то поверхности, предметы, объекты имеют тот или иной цвет?

 

Ответ прост: если поверхность непрозрачного предмета (частицы, его составляющие) отражает, например, красную часть спектра, а остальные - поглощает, то мы будем видеть ее тоже красной. Аналогично и с другими цветами или их комбинациями.

 

  • Фотосинтез

 

Представим себе уже достаточно взрослое растущее зеленое растение.

Главные условия его жизни: солнце, воздух и вода (плюс минеральное питание из почвы). Солнечный свет - источник энергии, диоксид углерода (углекислый газ) воздуха - источник углерода (главного строительного материала) и вода - источник кислорода, входящего в ее состав (на молекулярном уровне).

И все эти три жизненные силы объединены процессом фотосинтеза, при котором происходит образование органических веществ (углеводов) благодаря энергии света при участии фотосинтезирующего пигмента - хлорофилла.

Днем, на свету вода разделяется на кислород и водород и запасается энергия. Ночью, в темноте углекислый газ соединяется благодаря запасенной энергии с водородом, и образуются молекулы углеводов.

Заметим, что выделяющимся в результате световой фазы фотосинтеза кислородом дышит все живое на Земле.

 

Как же влияет на фотосинтез спектральный состав солнечного или иного света ?

Давайте вспомним - почему лист растения зеленый? Правильно, именно потому, что его поверхность отражает (а значит - не поглощает) зеленый свет. А это свойство объясняется именно присутствием в зеленом листе пигмента хлорофилла. И поглощает хлорофилл свет (а значит и энергию) из красной и синей областей спектра дневного света.

 

Отсюда вывод применительно к фотосинтезу: желто-зеленая составляющая дневного света практически бесполезна для роста и жизни растения, а нужен ему - красный и синий свет.

Но давайте все же не забывать, что все сказанное про фотосинтез относится к взрослому (или достаточно подросшему) растению. А нас интересуют особенно первые дни или даже часы жизни растения, прорастающего из семени.

 

И оказывается, что здесь есть свои законы, возможно даже более сложные, чем процессы фотосинтеза. Который не происходит по той простой причине, что в проростке пока еще нет хлорофилла, без которого фотосинтез, а значит, рост и сама жизнь растения - невозможны. Как же разорвать этот порочный круг? И тут появляется новое понятие - фотоморфогенез.

 

  • Фотоморфогенез

 

Фотоморфогенез - это процессы, происходящие в растении под влиянием света различного спектрального состава и интенсивности. В них свет выступает не как первичный источник энергии, а как сигнальное средство, регулирующеепроцессы роста и развития растения. Можно провести некую аналогию с уличным светофором, автоматически регулирующим дорожное движение. Только для управления природа выбрала не "красный - желтый -зеленый", а другой набор цветов: "синий - красный - дальний красный".

 

И первое проявление фотоморфогенеза возникает в момент прорастания семени.

Про строение семени и особенности прорастания я уже рассказывал в статье про рассаду . Но там были опущены подробности, связанные с сигнальным действием света.Восполним же этот пробел.

 

Итак, семя проснулось от спячки и начало прорастать, находясь при этом под слоем почвогрунта, т.е в темноте. Замечу сразу, что мелкие семена, посеянные поверхностно и не присыпанные ничем, тоже прорастают в темноте ночью.

 

Кстати, по моим наблюдениям, вообще вся раасада, стоящая в светлом месте, прорастает ночью и увидеть массовые всходы можно утром.

Но вернемся к нашему несчастному проклюнувшемуся семени. Проблема заключается в том, что даже появившись на поверхность почвы, росток об этом не знает и продолжает активно расти, тянуться к свету, к жизни, пока не получит специального сигнала: стоп, можно дальше не спешить, ты уже на свободе и будешь жить. (Мне кажется, люди не сами придумали красный стоп-сигнал для водителей, а украли его у природы...:-).

И такой синал он получает не от воздуха, не от влаги, не от механического воздействия, а от кратковременного светового излучения, содержащего красную часть спектра .

 

А до получения такого сигнала проросток находится в так называемом этиолированном состоянии. В котором он имеет бледный вид и крючковатую согбенную форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты почечки (точки роста) при продирании через тернии к звездам, и он сохранится, если рост продолжится в темноте и растение будет оставаться в этом этиолированном состоянии.

 

Для вывода растения из такого состояния достаточно ежедневного кратковременного освещения продолжительностью от 5 до 10 минут.

 

  • Красный свет

 

Почему это происходит - еще немного теории. Оказывается, кроме хлорофилла, в любом растении есть еще один замечательный пигмент, имеющий название - фитохром. (Пигмент - это белок, имеющий избирательную чувствительность к определенному участку спектра белого света).

Особенность фитохрома заключается в том, что он может принимать две формы с разными свойствами под воздействием красного света (660 нм) и дальнего красного света (730 нм), т.е. он обладает способностью к фотопревращению. Причем поочередное кратковременное освещение тем или другим красным светом аналогично манипулированию любым выключателем, имеющим положение "ВКЛ-ВЫКЛ", т.е. всегда сохраняется результат последнего воздействия.

Это свойство фитохрома обеспечивает слежение за временем суток (утро-вечер), управляя периодичностью жизнедеятельности растения. Более того, светолюбивость или теневыносливость того или иного растения также зависит от особенностей имеющихся в нем фитохромов. И, наконец, самое главное - цветением растений также управляет... фитохром! Но об этом - в следующий раз.

 

А пока вернемся все же к нашему проростку (ну почему ему так не везет...) Фитохром, в отличие от хлорофилла, есть не только в листьях, но и в семени. Участие фитохрома в процессе прорастания семян для некоторых видов растений таково: просто красный свет стимулирует процессы прорастания семян, а дальний красный - подавляет прорастание семян. (Возможно, что именно поэтому семена и прорастают ночью). Хотя, это и не является закономерностью для всех растений. Но в любом случае, красный спект более полезен (он стимулирует), чем дальний красный, который подавляет активность жизненных процессов.

 

Но предположим, что нашему семечку повезло и оно проросло, появившись на поверхности в этиолированном виде. Теперь достаточно кратковременного освещения проростка, чтобы запустить процесс деэтиоляции: скорость роста стебля снижается, крючок распрямляется, начинается синтез хлорофилла, семядоли начинают зеленеть.

И все это, благодаря красному свету. В солнечном дневном свете обычных красных лучей больше, чем дальних красных, поэтому днем высока активность растения, а ночью оно переходит в неактивную форму.

 

Как же различить эти два близких участка спектра "на глаз" для источника искусственного освещения ? Если вспомнить, что красный участок граничит с инфракрасным, т.е. тепловым излучением, то можно предположить, что чем теплее "на ощупь" излучение, тем больше в нем инфракрасных лучей, а значит и дальнего красного света. Подставьте руку под обычную лампочку накаливания или под люминесцентную лампу дневного света - и почувствуете разницу.

 

  • Синий свет

 

Ну вот, с красным светом немного разобрались. А теперь вернемся к нашим баранам, точнее - фазанам из знаменитой формулы, которые олицетворяют собой фиолетово-синюю область спектра. И попытаемся разобраться, как же влияет на жизнь проростка синий свет. Заметим, что желто-зеленая часть спектра практически никак не влияет: ни холодно от него - ни жарко.

 

Итак, синий свет - чем же он хорош или плох. На самом деле - синий цвет играет также важную роль в жизни растений, благодаря другому пигменту - криптохрому, который реагирует на синий свет в диапазоне от 400 до 500 нм.

Для взрослых растений синий цвет, в частности, регулирует ширину устьиц листьев, управляет движением листьев за солнцем, угнетает рост стеблей.

 

Применительно к прорастающему растению очень важна роль синего света в сдерживании роста стебля и гипокотиля, т.е. в ограничении "вытягивания" рассады. Синий свет также угнетает прорастание семян.

Кроме того, синий свет управляет изгибом проростка и стебля: со стороны источника синего света рост клеток тормозится, поэтому стебль изгибается в сторону источника света. Наверное, все наблюдали рассаду, согнутую в сторону окна - это из-за синего света. Название этого явления - фототропизм.

Синий свет (а к нему можно отнести и ультра-фиолетовую часть спектра) стимулирует деление клеток, но тормозит их растяжение. Кстати, именно поэтому для альпийских растений, растущих на высокогорных лугах с большим процентом ультрафиолета, характерна розеточная, низкорослая форма. А при недостатке синего света (например, в загущенных посадках или под стеклом) растения вытягиваются.

 

  • Практические выводы

 

Можно ли из всего сказанного выше сделать какие-то практические выводы применительно к выращиванию рассады ? Давайте попробуем.

При этом нас будет интересовать выращивание рассады ранней весной в квартире в условиях короткого светового дня, требующего применения источников искусственного освещения. Здесь рассаду поджидает много неприятностей, связанных с особенностями освещения, поэтому вмешательство человека и его правильное поведение чрезвычайно важны. Гораздо проще дело обстоит в более поздее время года и в условиях открытого воздуха (в саду) - там регулирующую роль берет на себя солнце.

 

Первый вопрос - где лучше проращивать рассаду: на свету или в темноте ?

 

• На свету, на подоконнике.

Положительная сторона - сразу же после прорастания проростки гарантированно получат дозу света, тот самый сигнал, который выведет их из состояния прорастания. Отрицательная сторона - возможно тормозящее, угнетающее воздействие красных и синих лучей на прорастание семян.

• В темноте или закрытом от света месте.

Положительная сторона - больше шансов на прорастание, т.к. исключено угнетающее действие света.

Отрицательная сторона - если вовремя не отреагировать на появившиеся всходы, то велика вероятность получения вытянутой рассады.

 

Из практических соображений первый вариант более предпочтителен в тех случаях, когда не всегда есть возможность регулярного контроля за состоянием рассады.

Но мне кажется, что возможен еще и компромиссный, хотя и менее удобный вариант: днем плошки с посеянными семенами держать в темном месте, а на ночь выставлять их на подоконник к свету. Тогда и волки сыты будут и овцы - целы... Семена ночью прорастут, а утром - солнышко вот оно.

Ну и самый экзотический вариант (когда погода пасмурная или окна северные)- утром, обнаружив проростки, в течениие 10 минут светить на них достаточно ярким белым светом с помощью какого-либо светильника.

 

Второй вопрос - чем подсвечивать взошедшую, уже растущую рассаду ?

 

При выборе светильника в первую очередь нужно обращать внимание на его спектральную характеристику. При этом яркость и мощность решающего значения не имеют.

К сожалению, информация о спектре большинства бытовых светильников отсутствует, поскольку не входит категорию нормируемых параметров. А приводимая иногда в рекламе информация с трудом поддается проверке из-за сложности спектральных измерений, к тому же требующих специальных измерительных приборов.

Замечу, что речь не идет о специальных профессиональных светильниках, а лишь только о бытовой осветительной продукции.

 

Тем не менее, минимальная информация качественного характера общеизвестна и из ее анализа можно сделать какие-то предположения.

Обычные лампы накаливания не годятся, т.к. в их спектре много желтого и инфракрасного излучения, но мало синего света.

Более удачно применение люминесцентных светильников дневного света, спектр свечения которых более равномерен и не содержит инфракрасных (тепловых) лучей.

И хотя в нем есть какая-то доля излучения желто-зеленой части спектра, но она, хотя и не дает пользы, но и вреда особого не приносит, т.к. хлорофилл просто-напросто отражает этот свет. В то же время присутствие синей составляющей в их излучении будет способствовать торможению роста стеблей, тем самым препятствуя вытягиванию рассады.

Естественно, любые искусственные светильники разумно использовать только в вечерние и ранне-утренние часы, днем лучше пользоваться естественным освещением от окна.

 

И в заключение - немного собственного опыта (совсем свежего).

В этом году появилось желание сдвинуть посевную кампанию на месяц-полтора в более раннюю сторону (январь-февраль) с тем, чтобы освободить апрель для аналогичной деятельности в саду в открытом грунте.

Сказано - сделано. И в середине-конце января с интервалом в неделю было засеяно семенами некоторое количество плошек. Ну, а дальше события развивались по сценарию, описанному выше. Единственной проблемой было только то обстоятельство, что эту вот статью я тогда еще не успел прочитать, по той простой причине, что еще не написал ее. Поэтому все делалось практически вслепую.

И тем не менее сейчас (в начале апреля) на подоконнике днем, и на столе под лампой - вечером красуется примерно 20-30 плошек с неплохо выглядящей цветочной рассадой. А шесть штучек пеларгоний (по UNWINS'овской терминологии - гераней) чернолистных уже стоят распикированными в горшочки и уже с фигурными листьями (правда, пока еще не черными).

 

Но оставим хвастовство и вернемся к лампе. Это просто настольная лампа дневного света, по всей видимости - люминесцентная, но бездроссельная, а потому - совершенно бесшумная. Куплена в обычном магазине, торгующем бытовыми светильниками.

Лампа имеет массивное основание, на котором крепится кронштейн со светильником. Светильник - прямоугольной (овальной) формы, лампа - U-образная трубка люминесцентная. У кронштейна очень много степеней свободы, поэтому светильник легко и просто премещается в пространстве и принимает любое положение. Освещает достаточно равномерно и без подогрева площадь примерно в половину квадратного метра. Прошлой весной такой одной лампы хватило, чтобы вырастить с добрую сотню видов растений рассадой. Ну а в межсезонье ее можно использовать по прямому назначению.

В частности, для экрана компьютера нужен полумрак, а при работе с бумажными текстами очень помогает такая настольная лампа, в том числе и для написания статьи про неё саму.

 

Да, чуть было не забыл расшифровать странный подзаголовок этой статьи.

 

Каждый Охотник Желает Знать - Где Сидит Фазан ? - на этот, казалось бы, риторический вопрос можно дать важный для садовода ответ:

Каждый Фазан Сидит там, Где Зеленеет Овес.

Из которого следует, что Красный, Фиолетовый и Синий цвета очень нужны растениям, а Зеленый и Оранжевый - практически бесполезны...:-)

 

 

Источник: http://humangarden.ru/books/spectr.htm

Влияние спектра света на рост растений

 

 

КПД светодиодов в основном колеблется 30 до 55 %.

 

Спектральная характеристика белых светодиодов приближена к ЭСЛ однако имеет более широкую составляющую.

 

Красный светодиод 1Ватт выдает 30-40лм, а синий 20-30лм. Белый в среднем 100-110лм.

 

В солнечный летний день на один квадратный метр приходится около 2000 микромоль на метр кв. Светодиодная лампа 130ватт с расстояния 30см выдает примерно 1570 микромоль на метр кв.

 

Есть такие тонкости: для огурцов допустимое соотношение синего (400-500 нм), зеленого (500–600 нм) и красного (600–700 нм) излучения составляет 20:40:40%, а для томата – 20:15:65%. То есть, при длительном воздействии красного света (более 40%) огурцы будут погибать. Отсюда вывод: для огурцов надо ограничивать доли красных лучей. А вот томаты будут рады большему проценту красных лучей.

 

график для примера - эффективности nm.

 

Наиболее подходящим спектром для растений является красный 660нм,630нм (менее полезный) , в синей зоне 445нм.

 

320-400 нм – регуляторная роль в развитии растений, поэтому желательно присутствие этого излучения в небольших количествах в общем лучистом потоке.*(УФ диапазон,советуют разбросать несколько штук). Полезное влияние УФ ,доказано не в одном рапорте.

 

То, что растениям не нужен зелёный свет – это ошибка из-за того, что кривая фотосинтеза в зелёном спектре имеет прогиб по отношению к красному и синему свету. Установлено, что зелёный свет полезен для фотосинтеза плотных листьев, стеблей (а у НАС именно такие растения). Благодаря своей высокой проникающей способности, зелёный свет хорошо проникает к листьям нижних ярусов, густых посевов растений.

 

В результате исследований было показано, что наиболее благоприятными для выращивания светолюбивых растении являются интенсивности в пределах 150–220 Вт/м2, а оптимальный состав излучения имеет следующее соотношение энергий по спектру: 30% – в синей области (380–490 нм), 20% в зеленой (490–590 нм) и 50% – в красной области (600–700 нм). С использованием такого искусственного освещения получены урожаи, в несколько раз более высокие, чем при обычном освещении, причем за более короткие (в 1,5–2 раза!) сроки.

 

Ученые установили особенность красных лучей (600-690 нм) низкой интенсивности (не выше 620 лк) активно воздействовать на физиологические процессы в растениях, чувствительных к смене света темнотой и обратно (фотопериодических). Это в первую очередь относится к тепличным томатам и огурцам. При облучении их в вечерние сумеречные часы указанным светом специальных ламп был получен эффект ускорения развития, усиления ростовых процессов и повышения урожайности.

Инфракрасные лучи различно воздействуют на растения. На ближний инфракрасный свет (до 1100 нм) слабо реагируют томаты и довольно сильно огурцы. Этот диапазон света действует на растяжение подсемядольного колена, стеблей и побегов. Ближнее излучение при низких температурах может частично поглощаться хлорофиллом и не перегревать лист, что будет полезно для фотосинтеза.

 

УФ по крайне мере как в литературе ( влияет на метаболические процессы в растении).

 

  • Ультрафиолетовые лучи

 

Средние ультрафиолетовые лучи (длиной 280-315 нанометров) действуют наподобие пониженных температур, способствуя процессу закаливания растений и повышая их холодостойкость. На хлорофилл ультрафиолетовые лучи практически не действуют, у растений, перемещённых из темноты на свет (этиолированных*), хлорофилл интенсивно образуется. Длинные ультрафиолетовые лучи (длиной 315-380 нанометров) необходимы для обмена веществ и роста растений. Они так же задерживают вытягивание стеблей и повышают содержание витамина С.

 

Лучи 280-320 нм оказывают вредное воздействие на рост и развитие растений.

 

Длина волны ультрафиолетовых лучей, доходящих до земли, в которых растение испытывает потребность, колеблется в пределах 280-400 нм

 

Источник: https://jahforum.org/topic/3007

Растения и свет

 

Не у всех "городских" любителей дачной растительности, есть условия для выращивания рассады на солнечном подоконнике или лоджии. У меня тоже их нет. Насколько важен свет для растений я уже понял после неудавшихся опытов, и захотел разобраться ( как технарь) как именно свет влияет на рост растений. Благо, есть много статей, и собственные возможности для экспериментов. Начиная с этой заметки я буду популярно излагать - пересказывать переработанную через собственный опыт, информацию.

 

Свет, в совокупности с водой и углекислым газом, в результате фотохимических реакций, обеспечивает синтез (создание) новых растительных клеток. Этот процесс называется фотосинтезом.

В школьных учебниках упоминался всегда именно солнечный свет. Это спектр (смесь) из отдельных цветов, для запоминания которых мы в школе зубрили “каждый охотник желает знатьгде сидит фазан”

 

Каждая часть солнечного спектра (каждый цвет) имеет свою длину волны, которая измеряется в нанометрах (нм). Ультрафиолетовая часть лежит ниже 380 нм, фиолетовая – в зоне 380-430 нм, синяя – 430-490 нм, зеленая – 490-570 нм, желтая – 570-600 нм, красная – 600-780 нм, инфракрасная – выше 780 нм.

С увеличением высоты Солнца происходят изменения в соотношении отдельных составляющих спектра. В начальной стадии подъема Солнца над горизонтом в его лучах отсутствует свет от синего до ультрафиолетового. Зато красного много. Чем выше солнце – тем меньше красного и тем больше синего (облака голубые). Т.е. в течение дня происходит изменение спектрального состава солнечного света.

 

Каждому участку спектра света предназначена своя роль в жизнедеятельности растений:

Лучи с длиной волны 400-510 нм - первый максимум (440нм) поглощения хлорофиллом (синтез клеток)

Лучи с длиной волны 510-610 нм - зона спектра ослабленного фотосинтеза.

Лучи с длиной волны 610-700 нм - зона максимального (660нм)поглощения хлорофиллом и максимального фотосинтеза.( рост клеток, растягивание)

 

Растения также нуждаются в небольших дозах ультрафиолета и инфракрасных лучах.

После 720нм (дальний красный цвет) фотосинтез не прекращается - пока просто недостаточно изучено поведение растений. Чтобы провести эксперимент нужны светодиоды соответствующей длины волны, но на сегодняшний день их невозможно найти и они вовсе недоступны по цене.

 

Светокультура - это термин, характеризующий выращивание растений при искусственном освещении. Она складывается из таких факторов: спектр света (определенные длины волн),количество света (люксы, люмены, ватты и так далее, c учетом расстояния от светильников), длительность и периодичность освещения (фотопериод).

 

При фотосинтезе растений энергия света преобразовывается в химическую энергию - этот процесс происходит во всех зеленых растениях. На самом деле, наука объясняет, что интенсивность любой фотохимической реакции определяется не количеством поглощенной энергии, а числом поглощенных фотонов (квантов) света. При этом научно доказано, что в разных лучах солнечного света величина этих квантов различна.

Эта закономерность определенная- чем меньше длина волны (синий), тем «крупнее» сами кванты и больше их энергия. С ростом длины световой волны (красный) кванты «мельчают», их энергия МЕНЬШЕ, но их ЧИСЛО БОЛЬШЕ!!!

Это следует понимать так, что результат фотосинтеза зависит от количества квантов, а не от их энергии!

Этим и объясняется интенсивность роста зеленой массы под воздействием красного света. При облучении синим светом получаются коренастые растения с короткими междуузлиями, не происходит вытягивания растений, в них накапливается аскорбиновая кислота, повышается холодостойкость и обеспечивается световая закалка.

Значит можно сделать практический вывод - ростом растений можно управлять с помощью спектра! Я в этом убедился!

 

В процессе естественного отбора растения приспособились к поглощению именно тех лучей, энергия которых используется в процессе фотосинтеза наиболее эффективно. Это синие лучи с длиной волны 440 нанометров и красные 660 нм.

 

Поэтому, используя способы исскуственного освещения растений , в том числе светодиодные, для подсветки или досветки растений, вместе с ними необходимо знать соответствующую технологию для выращивания отдельных каждой группы или вида, растений . Даже при естественном освещении огородники получают очень разные результаты, потому как имеют разные условия выращивания, знания, опыт, условия и т.д.

 

Вероятно при исскуственном досвечивании рассады можно уравнять шансы вырастить одинаковую рассаду. Но для этого нужны дополнительные знания. Ведь режим свечения (светокультура), фотопериод, строго связан с вегетационным периодом. И очень сильно зависит от момента подкормки и полива растений. Сколько светить, каким спектром, какая мощность светового потока в каждой фазе жизни растюшки и как часто чередовать день-ночь - все это пока не имеет научных рекомендации.

Наши ученые агрономы, тысячи которых на бюджетные деньги десятки лет проводили исследования и эксперименты, не спешат делиться с простыми дачниками – огородниками. Скорее всего их исследования на диване не дали результатов, однако надеятся нужно.

 

Поэтому нам с вами самим приходится экспериментировать, пробовать и учиться на своих ошибках. И обмениваться друг с другом ПРАВИЛЬНОЙ информацией.

 

В различные периоды (фазы) жизни, отношение растюх к свету различно:

 

1. для набухания и прорастания семян cовсем не нужен свет.

 

2. При появлении всходов он необходим даже малотребовательным растениям. Недостаток видимых лучей и слабая общая освещенность в этот период приводят к вытягиванию и даже гибели всходов.

 

3. При выращивании рассады, когда идет интенсивный рост листьев и стеблей, все овощные растения предъявляют самые высокие требования к интенсивности солнечной радиации.

 

4. После ослабления ростовых процессов при максимальной площади листьев снижается потребность в освещении в связи с накоплением запаса пластических веществ. (капуста, корнеплоды).

5.В репродуктивном периоде — при цветении, образовании семян и плодов — растения снова предъявляют повышенные требования к интенсивности солнечной радиации.

 

 

Продолжительность освещения, длина дня и ночи оказывают влияние на процессы роста и развития овощных растений. Реакция растений на длину дня связана главным образом с районом их происхождения. Все овощные растения, родиной которых являются умеренная и субтропическая зоны,

быстрее переходят к репродуктивному периоду в средней и северной зонах, где летом день продолжается 15...17 ч. На юге. при коротком дне (10...11 ч) у них задерживается наступление цветения. Так, редис образует корнеплод до 300 г, укроп сильно ветвится, имеет короткие междоузлия и очень много листьев. Овощные растения, происходящие из тропических стран, в северных районах при длинном дне, переходят к репродуктивному периоду позже и дают урожаи ниже, чем на юге.

Продолжительность дня влияет на качественные изменения только при прохождении фаз вегетативного роста, в дальнейшем после начала плодоношения, она уже не имеет значения.

 

Из собственных наблюдений я заметил, что сложнее всего светокультура огурцов. Они очень сильно тормозятся синим светом, не любят прямого света - им нужен рассеянный, и кроме того лишний красный свет как-то влияет на цветение (?). нужно экспериментально подбирать для огурцов спектр. (мне оказалось проще их сразу в парник посадить). А томаты и перцы любят красный. Томаты больше всех. Цветы менее требовательны.

 

Хочу добавить важное и многократно проверенное: недодал света рассаде - недополучишь урожай. в будущем. Поэтому рассада должна быть упитанная, правильно развитая. "лучше шире,чем выше". В этот период надо строго следить за влажностью почвы и воздуха - все важно.

 

 

Источник: https://www.forumhouse.ru/entries/1877/

Свет в жизни растений

 

 

Cвет в жизни растений играет определяющую роль. Ведь световая энергия определяет процесс фотосинтеза. Фотосинтез – поглощение света растением через листья.

 

 В листьях содержится пигмент, (пигмент - окрашенное вещество в организме, участвующее в его жизнедеятельности и придающее цвет коже, волосам, чешуе, цветкам, листьям) называемый хлорофиллом, и именно через него растение поглощает световую энергию.

 

Активный рост растения, увеличение листьев происходит путем питания растения углеводородами -  обычными органическими соединениями. Их вырабатывает растение в процессе фотосинтеза. Углеводороды – результат реакции воды и двуокиси углерода. Однако продуктом, который вырабатывается в завершении фотосинтеза, является кислород – соединение, без которого не могут существовать живые организмы.

 

  • Факторы влияющие на фотосинтез

 

Существует ряд факторов, напрямую влияющих на процесс фотосинтеза растений. Прежде всего, интенсивность процесса напрямую зависит от

 

- содержания двуокиси углерода

 

- температуры окружающего воздуха

 

- достаточного обеспечения растения водой

 

- интенсивности света.

 

Однако для того, чтобы растение развивалось оптимально, важно не только наличие световой энергии, но и спектр света, а также длительность светового периода, когда растение бодрствует, и темного периода, когда оно отдыхает.

 

Если правильно регулировать длительность светового дня, то стадиями роста растения можно управлять. Так, у растений длинного дня можно регулировать их вегетативную стадию, а также время цветения. В свою очередь, для растений короткого дня световой период должен оставаться на определенном уровне, ведь слишком длительный период света может существенно нарушить время его цветения. Существует и категория растений, которые растут в зависимости от наличия света, но при этом продолжительность темного и светлого периода суток на них не влияет.

Таким образом, правильно регулируя свет, можно достичь качественных результатов в процессе выращивания разных видов растений.

 

  • Что же такое спектр света, и как он влияет на развитие растений?

 

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца – это лучи, которые имеют разную длину волны. Таким образом, свет – это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах  измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин.

 

 

Источник: https://www.promgidroponica.ru/vsjo-o-gidroponike/svet_dlja_rastenij

Сколько и какого света нужно растениям

 

Фотосинтeз

 

Многочисленными исследованиями установлено, что сухая масса растения на 45% состоит из углерода, который растение получает только из воздуха, но не из почвы. Усвоение растениями углекислоты происходит при участии света, в сложном физиологическом процессе, называемом фотосинтезом. Интенсивность фотосинтеза зависит от многих внешних условий, но, в первую очередь, от света. Наиболее часто интенсивность фотосинтеза соответствует цифрам в пределах от 5 до 25 мг CO2/дм2/час. Кактусы, как медленно растущие растения, имеют низкую интенсивность фотосинтеза (около 3-5 мг CO2/дм2/час).

 

Если в выборе температурных условий есть определённая ясность (оптимальная температура для кактусов +30-35°С. Длительное время мои экземпляры на точке роста имели 45°С. Если растениям это не вредило, но рост задерживало сильно), то вопрос о световом насыщении нуждается в дополнительных исследованиях. Известно только, что световое насыщение у светолюбивых растений наступает при интенсивности 1/3–1/4, а в некоторых случаях до 1/2 от интенсивности полной солнечной радиации (полуденная освещённость в безоблачный летний день), т.е. увеличение освещённости до полной не даёт увеличения фотосинтеза. Практически это значит, что кактусы растут только весной и осенью, когда имеет место ослабленное солнечное освещение. Сами растения приспосабливаются к внешним условиям. Так, опунция располагает свои стебли параллельно солнечным лучам с целью получить уменьшенную дозу солнечной радиации. Как правило, растения пустынь имеют несколько сниженное содержание хлорофилла. Признаком этому служит бледная окраска. Наиболее интенсивно фотосинтез идёт при красно-оранжевых лучах, слабее при сине-фиолетовых и почти не происходит при зелёном свете.

 

  • Спектральный состав света

 

Этот сугубо теоретический вопрос имеет важное практическое значение. Обычно любители совершенно незаслуженно не придают ему должного внимания, а порой совершенно игнорируют. Думаю, что любитель растений должен знать, какие процессы в растении и почему происходят в часы утренние, дневные и вечерние; чем отличается свет искусственных источников от естественного. Знание этого вопроса позволит отказаться от распространённого даже среди квалифицированных любителей неправильного мнения о невозможности выращивания кактусов под искусственными источниками света.

 

 

Свет можно рассматривать как энергию электромагнитных колебаний с определённой длиной волны. Единицей измерения длины волны служит нанометр (миллимикрон). По спектру всю солнечную энергию можно подразделить на три основные части:

 

ультрафиолетовые лучи (10-400 нм);

 

видимое излучение (400-760 нм);

 

инфракрасное излучение (более 760 нм).

 

По физиологическому действию на растения, определённые участки спектра различаются следующий образом.

 

Лучи с длиной волны до 280 нм – убивают растение.

Лучи с длиной волны 280-315 нм – губительны для большинства растений.

Лучи с длиной волны 315-400 нм – растение становится короче, а листья толще.

Лучи с длиной волны 400-510 нм – второй максимум поглощения хлорофиллом.

Лучи с длиной волны 510-610 нм – зона спектра ослабленного фотосинтеза.

Лучи с длиной волны 610-700 нм – зона максимального поглощения хлорофиллом и максимальной фотосинтетической активности.

Лучи с длиной волны 700-1000 нм – мало изучены.

 

Длина волны ультрафиолетовых лучей, доходящих до земли, в которых растение испытывает потребность, колеблется в пределах 280-400 нм.

 

 

Источник http://m5zg65y.nnqwyylsovygcltdn5wq.cmla.ru/

Факторы, влияющие на интенсивность фотосинтеза

 

Зеленый лист – источник жизни на нашей планете. Если бы не зеленые растения, на Земле не было бы ни животных, ни людей. Так или иначе, растения служат источником пищи для всего животного мира.

 

Человек использует энергию не только солнечных лучей, падающих на землю сейчас, но и тех, что падали на нее десятки и сотни миллионов лет назад. Ведь и уголь, и нефть, и торф – химически измененные остатки растений и животных, живших в те далекие времена.

 

В последние десятилетия к проблеме фотосинтеза приковано внимание ведущих специалистов ряда отраслей естествознания, ее различные аспекты всесторонне и глубоко исследуются во многих лабораториях мира. Интерес определяется прежде всего тем, что фотосинтез составляет основу энергообмена всей биосферы.

 

Интенсивность фотосинтеза зависит от многих факторов. Интенсивность света, необходимая для наибольшей эффективности фотосинтеза, у различных растений различна. У теневыносливых растений максимум активности фотосинтеза достигается примерно при половине полного солнечного освещения, а у светолюбивых растений – почти при полном солнечном освещении.

 

У многих теневыносливых растений не развивается палисадная (столбчатая) паренхима в листьях, и имеется только губчатая (ландыш, копытень). Кроме того, эти растения имеют более крупные листья и более крупные хлоропласты.

 

Также на интенсивность фотосинтеза влияет температура окружающей среды. Наибольшая интенсивность фотосинтеза наблюдается при температуре 20–28 °С. При дальнейшем повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания возрастает. Когда интенсивности фотосинтеза и дыхания совпадают, говорят о компенсационном пункте.

 

Компенсационный пункт изменяется в зависимости от интенсивности света, повышения и понижения температуры. Например, у холодостойких бурых морских водорослей он соответствует температуре около 10 °С. Температура влияет, в первую очередь, на хлоропласты, у которых в зависимости от температуры изменяется структура, что хорошо видно в электронном микроскопе.

 

Очень большое значение для фотосинтеза имеет содержание углекислого газа в окружающем растение воздухе. Средняя концентрация углекислоты в воздухе составляет 0,03% (по объему). Понижение содержания углекислого газа неблагоприятно влияет на урожай, а его повышение, например до 0,04% может повысить урожай почти в 2 раза. Более значительное повышение концентрации вредно для многих растений: например, при содержании углекислого газа около 0,1% растения томатов заболевают, у них начинают скручиваться листья. В оранжереях и теплицах можно повысить содержание углекислого газа, выпуская его из специальных баллонов или давая испаряться сухой углекислоте.

 

Свет разных длин волн также по-разному влияет на интенсивность фотосинтеза. Впервые интенсивность фотосинтеза в различных лучах спектра исследовал физик В. Добени, показавший в 1836г., что скорость фотосинтеза в зеленом листе зависит от характера лучей. Методические погрешности при проведении эксперимента привели его к неправильным выводам. Ученый поместил отрезок побега элодеи в пробирку с водой срезом вверх, освещал пробирку, пропуская солнечный свет через цветные стекла или окрашенные растворы, и учитывал интенсивность фотосинтеза по количеству пузырьков кислорода, отрывающихся с поверхности среза за единицу времени. Добени пришел к выводу, что интенсивность фотосинтеза пропорциональна яркости света, а наиболее яркими лучами в то время считались желтые. Этой же точки зрения придерживался и Джон Дрепер (1811–1882), который изучал интенсивность фотосинтеза в различных лучах спектра, испускаемых спектроскопом.

 

Роль хлорофилла в процессе фотосинтеза доказал выдающийся российский ботаник и физиолог растений К.А. Тимирязев. Проведя в 1871–1875 гг. серию опытов, он установил, что зеленые растения наиболее интенсивно поглощают лучи красной и синей части солнечного спектра, а не желтые, как это считалось до него. Поглощая красную и синюю часть спектра, хлорофилл отражает зеленые лучи, из-за чего и кажется зеленым.

На основании этих данных немецкий физиолог растений Теодор Вильгельм Энгельман в 1883 г. разработал бактериальный метод изучения ассимиляции углекислого газа растениями.

 

 

Он предположил, что если поместить в каплю воды клетку зеленого растения вместе с аэробными бактериями и осветить их разноокрашенными лучами, то бактерии должны концентрироваться у тех участков клетки, в которых сильнее всего разлагается углекислый газ и выделяется кислород. Чтобы проверить это, Энгельман несколько усовершенствовал световой микроскоп, укрепив над зеркальцем призму, которая разлагала солнечный свет на отдельные составляющие спектра. В качестве зеленого растения Энгельман использовал зеленую водоросль спирогиру, крупные клетки которой содержат длинные спиральные хроматофоры.

 

Поместив в каплю воды на предметном стекле кусочек водоросли, Энгельман внес туда же немного аэробных бактерий, после чего, рассмотрел препарат под микроскопом. Оказалось, что в отсутствии призмы приготовленный препарат освещался ровным белым светом, и бактерии равномерно распределялись вдоль всего участка водоросли. В присутствии призмы отраженный от зеркальца луч света преломлялся, освещая участок водоросли под микроскопом светом с разной длиной волны. Спустя несколько минут, бактерии сконцентрировались на тех участках, которые были освещены красным и синим светом. На основании этого Энгельман сделал вывод о том, что разложение углекислого газа, (а, значит, и выделение кислорода) у зеленых растений наблюдается в дополнительных к основной окраске (т.е. зеленой) лучах – красных и синих.

 

 

Данные, полученные на современном оборудовании, полностью подтверждают результаты, полученные Энгельманом более 120 лет назад.

Поглощенная хлорофиллом световая энергия принимает участие в реакциях первого и второго этапов фотосинтеза; реакции третьего этапа являются темновыми, т.е. происходит без участия света. Измерения показали, что процесс восстановления одной молекулы кислорода требует минимум восьми квантов световой энергии. Таким образом, максимальный квантовый выход фотосинтеза, т.е. число молекул кислорода, соответствующее одному кванту поглощенной растением световой энергии, составляет 1/8, или 12,5%.

 

Р.Эмерсон с сотрудниками определили квантовый выход фотосинтеза при освещении растений монохроматическим светом различной длины волны. При этом установлено, что выход остается постоянным на уровне 12% в большей части видимого спектра, но резко снижается вблизи дальней красной области. Это снижение у зеленых растений начинается при длине волны 680 нм. При длине больше 660 нм свет поглощает только хлорофилл a; хлорофилл b имеет максимум поглощения света при 650 нм, а при 680 нм практически свет не поглощает. При длине волны больше, чем 680 нм, квантовый выход фотосинтеза может быть доведен до максимальной величины 12% при условии, что растение одновременно будет освещаться также светом с длиной волны 650 нм. Иначе говоря, если свет, поглощаемым хлорофиллом а дополняется светом, поглощаемый хлорофиллом b, то квантовый выход фотосинтеза достигает нормальной величины.

 

Усиление интенсивности фотосинтеза при одновременном освещении растения двумя лучами монохроматического света различной длины волны по сравнению с его интенсивностью, наблюдаемой при раздельном освещении этими же лучами, получило название эффекта Эмерсона. Опыты с различными комбинациями дальнего красного света и света с более короткой длиной волны над зелеными, красными, синезелеными и бурыми водорослями показали, что наибольшее усиление фотосинтеза наблюдается в том случае, если второй луч с более короткой длиной волны поглощается вспомогательнымих пигментами.

 

У зеленых растений такими вспомогательными пигментами являются каротиноиды и хлорофилл b, у красных водорослей – каротиноиды и фикоэритрин, у синезеленых – каротиноиды и фикоцианин, у бурых водорослей – каротиноиды и фукоксантин.

 

Дальнейшее изучение процесса фотосинтеза привело к заключению, что вспомогательные пигменты передают от 80 до 100% поглощенной ими световой энергии хлорофиллу а. Таким образом, хлорофилл ааккумулирует световую энергию, поглощаемую растительной клеткой, и затем использует ее в фотохимических реакциях фотосинтеза.

Позже было обнаружено, что хлорофилл а присутствует в живой клетке в виде форм с различными спектрами поглощения и различными фотохимическими функциями. Одна форма хлорофилла а, максимум поглощения у которой соответствует длине волны 700 нм, принадлежит к пигментной системе, получившей название фотосистема I, вторая форма хлорофилла а с максимумом поглощения 680 нм, принадлежит к фотосистеме II.

 

Итак, в растениях была открыта фотоактивная пигментная система, особенно сильно поглощающая свет в красной области спектра. Она начинает действовать уже при ничтожной освещенности. Кроме того, известна и другая регуляторная система, которая избирательно поглощает и использует для фотосинтеза синий цвет. Эта система работает при достаточно сильном свете.

Установлено также, что фотосинтетический аппарат одних растений в значительной степени использует для фотосинтеза красный свет, других – синий.

 

Для определения интенсивности фотосинтеза водных растений можно использовать метод подсчета пузырьков кислорода. На свету в листьях происходит процесс фотосинтеза, продуктом которого является кислород, накапливающийся в межклетниках. При срезании стебля избыток газа начинает выделяться с поверхности среза в виде непрерывного тока пузырьков, быстрота образования которых зависит от интенсивности фотосинтеза. Данный метод не отличается большой точностью, но зато прост и дает наглядное представление о зависимости процесса фотосинтеза от внешних условий.

 

Опыт 1. Зависимость продуктивности фотосинтеза от интенсивности света

 

Материалы и оборудование: элодея; водные растворы NaHCO3, (NH4)2CO3 или минеральная вода; отстоявшаяся водопроводная вода; стеклянная палочка; нитки; ножницы; электролампа мощностью 200 Вт; часы; термометр.

 

1. Для опыта отбирали здоровые побеги элодеи длиной около 8 см интенсивного зеленого цвета с неповрежденной верхушкой. Их подрезали под водой, привязывали ниткой к стеклянной палочке и опускали верхушкой вниз в стакан с водой комнатной температуры (температура воды должна оставаться постоянной).

 

2. Для опыта брали отстоявшуюся водопроводную воду, обогащенную СО2 добавлением NaHCO3 или (NH4)2CO3, или минеральную воду, и выставляли стакан с водным растением на яркий свет. Наблюдали за появлением пузырьков воздуха из среза растения.

 

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, данные записывали в таблицу, определяли средний результат.

 

4. Стакан с растением удаляли от источника света на 50–60 см и повторяли действия, указанные в п. 3.

 

5. Результаты опытов сравнивали и делали вывод о различной интенсивности фотосинтеза на ярком и слабом свету.

 

Результаты опытов представлены в таблице 1.

 

Вывод: при использованных интенсивностях света интенсивность фотосинтеза увеличивается с ростом интенсивности света, т.е. чем больше света, тем лучше идет фотосинтез.

 

Таблица 1. Зависимость фотосинтеза от интенсивности света

 

 

Опыт 2. Зависимость продуктивности фотосинтеза от спектрального состава света

 

Материалы и оборудование: элодея; набор светофильтров (синий, оранжевый, зеленый); семь высоких широкогорлых банок; отстоявшаяся водопроводная вода; ножницы; электролампа мощностью 200 Вт; часы; термометр; пробирки.

 

1. Пробирку наполняли на 2/3 объема отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель подрезали под водой.

 

2. В высокую широкогорлую банку помещали синий светофильтр (круговой), под фильтр – пробирку с растением и выставляли банку на яркий свет так, чтобы он попадал на растение, походя через светофильтр. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

 

3. Когда ток пузырьков становился равномерным, подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, пределяли средний результат, данные заносили в таблицу.

 

4. Синий светофильтр заменяли на красный и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

 

5. Результаты опытов сравнивали и делали вывод о зависимости интенсивности фотосинтеза от спектрального состава света.

 

Результаты опыта представлены в таблице 2.

 

 

Вывод: процесс фотосинтеза в оранжевом свете идет очень интенсивно, в синем замедляется, а в зеленом практически не идет.

 

Опыт 3. Зависимость интенсивности фотосинтеза от температуры

 

Материалы и оборудование: элодея; три высокие широкогорлые банки; отстоявшаяся водопроводная вода; ножницы; пробирки; электролампа мощностью 200 Вт; часы; термометр.

 

1. Пробирку на 2/3 объема наполняли отстоявшейся водопроводной водой и помещали в нее водное растение верхушкой вниз. Стебель отрезали под водой.

 

2. В три широкогорлые банки наливали отстоявшуюся водопроводную воду разной температуры (от 14 °С до 45 °С), помещали пробирку с растением в банку с водой средней температуры (например, 25 °С) и выставляли прибор на яркий свет. Наблюдали за появлением пузырьков воздуха из среза стебля растения.

 

3. Через 5 мин подсчитывали количество пузырьков, выделившихся за 1 мин. Подсчет проводили 3 раза с перерывом в 1 мин, определяли средний результат, данные заносили в таблицу.

 

4. Пробирку с растением переносили в банку с водой другой температуры и повторяли действия, указанные в п. 3, следя за тем, чтобы расстояние от источника света и температура воды оставались постоянными.

 

5. Результаты опытов сравнивали и делали письменный вывод о влиянии температуры на интенсивность фотосинтеза.

 

Результаты опыта представлены в таблице 3.

 

 

Вывод: в исследованном интервале температур интенсивность фотосинтеза зависит от температуры: чем она выше, тем лучше идет фотосинтез.

Таблица 3. Зависимость фотосинтеза от температуры

 

 

В результате проведенного нами исследования мы сделали следующие выводы.

 

1. Фотоактивная пигментная система особенно сильно поглощает свет в красной области спектра. Довольно хорошо поглощаются хлорофиллом синие лучи и очень мало зеленые, что объясняет зеленую окраску растений.

 

2. Проведенный нами опыт с веточкой элодеи убедительно доказывает, что максимальная интенсивность фотосинтеза наблюдается при освещении именно красным светом.

 

3. Интенсивность фотосинтеза зависит от температуры.

 

4. Фотосинтез зависит от интенсивности света. Чем больше света, тем лучше идет фотосинтез.

Результаты подобной работы могут иметь практическое значение. В тепличных хозяйствах с искусственным освещением, подбирая спектральный состав света, можно увеличить урожай. В Агрофизическом институте в Ленинграде в конце 1980-х гг. в лаборатории Б.С. Мошкова с использованием особых режимов освещения получали 6 урожаев томатов в год (180 кг/м2).

 

Растениям требуются световые лучи всех цветов. Как, когда, в какой последовательности и пропорции снабжать его лучистой энергией – это целая наука. Перспективы светокультуры очень велики: из лабораторных экспериментов она может превратиться в промышленное круглогодичное производство овощных, зеленых, декоративных и лекарственных культур.

 

Источники: http://sc.nios.ru (рисунки и схемы)

 

Литература:

 

Генкель П.А. Физиология растений

Кретович В.Л. Биохимия растений

Рейвн П., Эверт Р., Айкхорн С. Современная ботаника

Саламатова Т.С. Физиология растительной клетки

Что же такое спектр света, и как он влияет на развитие растений?

 

Солнечный свет не является однородным, если рассматривать его спектральный состав. Свет солнца – это лучи, которые имеют разную длину волны. Таким образом, свет – это частица спектра электромагнитных волн, которую человек может видеть. При этом различать человеческие глаза способны область электромагнитного спектра, которая пребывает в промежутке примерно от 400 до 700 нанометров. В нанометрах  измеряется длина, и именно эту единицу наиболее часто используют для измерения малых длин

 

 

Но в жизни растений наиболее важное значение имеет физиологически активная и фотосинтетическая активная радиация.

 

Самые важные лучи для растений – оранжевые (620-595 нм) и красные (720-600 нм). Эти лучи поставляют энергию для процесса фотосинтеза, а также «отвечают» за процессы, влияющие на скорость развития растения. Например, пигменты с пиком чувствительности в красной области спектра отвечают за развитие корневой системы, созревание плодов, цветение растений. Для этого в теплицах используются натриевые лампы, у которых большая часть излучения приходится на красную область спектра.

 

Так, к примеру, слишком большое количество красных и оранжевых лучей могут задержать цветение растения.

 

Также в фотосинтезе непосредственное участие принимают и синие, а также фиолетовые лучи (490-380нм). Кроме того, в их функции входит стимулирование образования  белков и регулирование скорости роста растения. Те растения, которые растут в природных условиях короткого дня, быстрее зацветают именно под воздействием этих лучей.

 

Пигменты с пиком поглощения в синей области отвечают за развитие листьев, рост растения и т.д. Растения, выросшие с недостаточным количеством синего света, например, под лампой накаливания, более высокие - они тянутся вверх, чтобы получить побольше "синего света". Пигмент, который отвечает за ориентацию растения к свету, также чувствителен к синим лучам.

 

 

Лучи, которые имеют длинную волну (315-380 нм), не позволяют растению чрезмерно «вытягиваться» и отвечают за синтез ряда витаминов. В то же время  ультрафиолетовые лучи, которые имеют длину волны 280-315 нм, могут повышать холодостойкость растений.

 

Таким образом, жизненно важными для развития растений не являются только желтые и зеленые лучи (565-490 нм).

 

Следовательно, при организации искусственного осветления растений необходимо в первую очередь учитывать их потребность в особенном спектре света.

 

 

Источник: https://jahforum.org/topic/3007